
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DIT - University of Trento

RelBAC-Relation-Based

Access Control

Rui Zhang

Advisor:

Prof. Fausto Giunchiglia

Università degli Studi di Trento

February 2009

Abstract

The Web 2.0 is making everything on the web more interactive, more so-

cial and more dynamic. Nowadays, unknown users are from dynamic on-

line communities; new resources emerge in different granularity and scales;

even relatively static permissions are evolving with new contexts; everything

has changed due to the new information technologies. However, the privacy

issue is inevitable: How to control the access in the new web scenarios?

Facing these challenges, we propose a new model RelBAC (Relation-

Based Access Control), for the access control problem of the web. The main

feature of RelBAC is that permissions are modeled as binary relations be-

tween the users and the resources. An Entity Relationship (ER) model

is used to illustrate RelBAC and by exploiting the formalization of ER

models in Description Logics (DL), the model is formalized with a domain

specific DL with access control policies encoded as DL formulas. In contrast

to other access control model formalizations, RelBAC formalizes permis-

sions as DL roles rather than unary concepts. The logical representation of

RelBAC brings automated reasoning to facilitate design and management.

Lightweight Ontology theory is exploited to encode the formerly heteroge-

neous knowledge of users, resources and permissions into ontologies with

unified hierarchical structures. Partial orders are defined to formalize these

hierarchies and result in free inheritance of user and resource memberships

and also free permission propagation. Semantic Matching techniques are

used to find the semantic similarities between these lightweight ontologies

which in turn facilitate the design and reuse of access control policies.

Keywords

Relation-Based Access Control, Description Logics, Semantic Web, Lightweight

Ontologies, Semantic Matching

Contributions and Publications

The work has been developed in collaboration with many people and in

particular with: Fausto Giunchiglia, Bruno Crispo and Ilya Zaihrayeu.

The contributions of this thesis are as follows:

• A novel access control model RelBAC (short for Relation-Based Ac-

cess Control) is proposed for the access control problem in dynamic

web scenarios. RelBAC models permissions as binary relations and

hierarchies with partial orders. The ER model of RelBAC makes it

easy to be integrated into system design.

• RelBAC is formalized with access control domain specific Descrip-

tion Logics (DL) in permissions formalized as DL roles, partial or-

ders formalized with subsumption axioms, and access control rules

formalized into DL formulas. Automated reasoning about access con-

trol policies can be performed on RelBAC through off-the-shelf DL

reasoners. Some preliminary evaluations are made upon automated

generated access control domain ontologies.

• Extendability of RelBAC is shown by representing other access con-

trol models such as RBAC (short for Role-Based Access Control) and

PBAC (short for Purpose-Based Access Control).

• The theory and algorithms of Lightweight Ontologies are applied on

RelBAC to represent the structured knowledge about users, resources

and permissions. The heterogeneous structured knowledge bases are

formalized into lightweight ontologies to provide free paths for per-

mission propagation and membership inheritance.

• We use Semantic Matching techniques among the knowledge of users,

resources and permissions to find the semantic similarities to guide

the design and reuse of access control policies.

• In our first implementation of RelBAC, we have encoded user and

resource directories as lightweight ontologies and performed some pre-

liminary evaluations on reasoning about these ontologies.

Part of the materials of this thesis has been published as follows.

• [44] Fausto Giunchiglia, Rui Zhang, and Bruno Crispo. Relbac: Rela-

tion based access control. In SKG’08: Proceedings of the 2008 Fourth

International Conference on Semantics, Knowledge and Grid, pages

311, Washington, DC, USA, 2008. IEEE Computer Society.

• [45] Fausto Giunchiglia, Rui Zhang, and Bruno Crispo. Ontology

driven community access control. Submitted to SPOT2009 - Trust

and Privacy on the Social and Semantic Web, to appear 2009.

• [88] Rui Zhang, Bruno Crispo, and Fausto Giunchiglia. Relbac:design

and run time reasoning about web access control policies. Submitted

to IEEE International Symposium on Policies for Distributed Systems

and Networks (POLICY09), to appear 2009.

• [87] Rui Zhang. Automatic Access Control Rule Generation via Se-

mantic Matching. Accepted as poster in Workshop on Matching and

Meaning 2009, to appear 2009.

vi

Acknowledgments

I would like to express my earnest gratitude to my adviser, Fausto

Giunchiglia. It is he that led me to the entrance to scientific research

of Artificial Intelligence. His insightful suggestions, generous encourage-

ments and considerate instructions accompanied me along the way of my

PhD study. Through countless hours and endless patience, he taught me

how to do research, from the very start as to find a problem, shape the

idea, to a higher stage as to write an article, present a paper, and finally

build a solution and accomplish this thesis. He is an experienced scien-

tific supervisor, and a life guider as well. His advices always penetrate the

intracity like the sunshine through the fogs. His optimism, patience and

precision have influenced and will always benefit me all my life.

I am grateful to all the external thesis committee members: Alessandro

Artale and Massimo Benerecetti for the time and energy spent on reviewing

the thesis and the precious detailed suggestions.

I would thank Bruno Crispo who helped me a lot to understand the field

of Access Control. Talks and reviews greatly shortened the warming-up to

know a brand new area.

I would appreciate to my friends, colleagues and many other people as

this thesis consists of their contributions through comments, discussions,

encouragements, advices and all other ways.

Last but not least, I would like to show my everlasting thanks to my par-

ents for understanding my years away from their sides and for their endless

love to support me without any complain. I should specially acknowledge

my wife, Gao Wenjuan who sacrificed her career and accompanied me

through all this period of pursuing my PhD. Her considerate inspirations

and blind faith have been the infinite power of my step forwards.

Contents

Introduction 1

1 New Challenges for Access Control 5

1.1 The Access Control Problem 6

1.2 New Challenges . 7

1.2.1 Web Resource . 7

1.2.2 Ubiquitous Computing 9

1.2.3 Social Network . 10

1.3 Current Applications . 11

1.4 Summary . 14

2 Access Control Models 15

2.1 Early Access Control Models 16

2.1.1 Discretionary And Mandatory Access Control . . . 16

2.1.2 Access Matrix . 17

2.1.3 Access Control List 18

2.2 Role-Based Access Control 20

2.2.1 The RBAC Model 21

2.2.2 Separation of Duties 23

2.2.3 Administration . 23

2.2.4 Extensions . 24

2.3 Trust-Based Access Control 25

ix

2.4 Formal Methods for Access Control Models 27

2.4.1 Non-Logical . 28

2.4.2 Logical . 29

2.5 Summary . 32

3 RelBAC Model 35

3.1 ER Model of RelBAC . 36

3.2 Logical Framework of RelBAC 42

3.3 General Rules . 43

3.4 Rules Involving Instances 45

3.5 The ‘All’ Rule . 47

3.6 Grained Cardinality . 49

3.7 Summary . 51

4 Reasoning in RelBAC 53

4.1 Design Time Reasoning . 54

4.1.1 Hierarchy Management 54

4.1.2 Membership Management 56

4.1.3 Permission Assignment 62

4.1.4 Separation of Duties (SoD) 66

4.2 Runtime Reasoning . 71

4.3 Summary . 74

5 Other Models in RelBAC 75

5.1 Early Models in RelBAC 75

5.2 RBAC in RelBAC . 77

5.2.1 Interpretation of RBAC 77

5.2.2 RBAC in RelBAC 78

5.3 PBAC in RelBAC . 81

5.3.1 PBAC model . 81

x

5.3.2 Interpretation of PBAC 82

5.3.3 PBAC in RelBAC 83

5.4 Summary . 85

6 Lightweight Ontologies for Access Control 87

6.1 Propagation Problem . 87

6.2 Lightweight Ontologies . 89

6.3 Lightweight Ontologies in RelBAC 90

6.4 Summary . 94

7 Semantic Matching for Access Control 95

7.1 Request for New Rules . 96

7.2 Semantic Matching . 97

7.3 Automated Rule Generation in RelBAC 99

7.3.1 Rule Design . 99

7.3.2 Rule Integration . 101

7.4 Summary . 103

8 Evaluation 105

8.1 Reasoner Selection . 105

8.2 Benchmark Creation . 107

8.3 Results . 109

8.3.1 Performance Test 110

8.3.2 Single Type Assignment 112

8.3.3 Multiple Type Assignment 113

8.3.4 Increasing Individual 115

8.4 Summary . 117

9 Implementation 119

9.1 System Architecture . 119

xi

9.2 Closed World Assumption 121

9.3 ‘All’ Rule Implementation 123

9.4 Summary . 125

10 Conclusion 127

Bibliography 131

A Brief Introduction of Description Logic 143

xii

List of Tables

1.1 Access Control of Current Social Network Portals 12

2.1 Example of Access Control Matrix 18

2.2 Administration Functions for RBAC 24

3.1 RelBAC Rules Correspondence 50

5.1 RBAC in RelBAC . 79

5.2 PBAC in RelBAC . 85

7.1 Semantic Matching on Labels 98

8.1 DL Reasoners . 107

8.2 Wine Ontologies . 110

8.3 FaCT++ vs. Pellet . 111

9.1 Policy Base Consistency Test 121

A.1 Basic Description Logic-Attribute Language (AL) 144

A.2 Extended Description Logic 145

xiii

List of Figures

2.1 ACL Model . 19

2.2 ACL in a Linux Operation System 19

2.3 RBAC Model . 21

2.4 The ER Diagram of Basic Access Control 28

3.1 The ER Diagram of the RelBAC Model 36

3.2 SUBJECT and OBJECT Hierarchies 38

3.3 PERMISSION Hierarchies 39

3.4 ER Model of the Social Desktop Scenario 41

3.5 Fine Grained Access Control of RelBAC 49

4.1 Delete User Membership in Hierarchy. 61

5.1 RBAC in RelBAC . 80

5.2 PBAC in RelBAC . 84

6.1 Alice’s Social Network . 88

6.2 Alice’s Social Ontology . 88

6.3 Alice’s Web Directories . 91

6.4 ‘Update’ Ontology . 91

6.5 RelBAC Permission Assignment on Lightweight Ontologies 92

6.6 Scattered Permissions to a lightweight ontology 93

7.1 Bob’s Ontology . 102

7.2 Ontology Matching for Rule Reuse 102

xv

8.1 Reasoner Performance on Single Type Assignment 112

8.2 Reasoner Performance on Multiple Types Assignments . . 114

8.3 Reasoner Performance on Increasing Individuals 116

9.1 The System Architecture using RelBAC. 120

xvi

Introduction

Problem

Access control is a specific problem in the security domains. In the ‘Infor-

mation Age’, it usually refers to control the access to digital web resources.

Nowadays, access control evolves from the original physical property con-

trol into a big problem covering three aspects: authentication, authoriza-

tion and audit, which correspond respectively to the questions such as

‘whether the user is the one that she claims’, ‘whether she is allowed to

access something’ and ‘how she is accessing or has accessed the resource’.

In this thesis, we focus on the aspect of authorization of access control.

In the new web scenarios, access control is far more complex than it used

to be. Resources grow rapidly in size and types (e.g., blogs, web directories,

tags, semantics, etc.). Most users are from the Internet that one has never

met face to face (e.g., online communities, social networks, etc.). What

makes it more interesting is that the access right itself becomes complicated

with various of attributes and contexts (e.g., time, location, purpose, etc.).

All these knowledge are no longer static and centralized because of the new

technologies (e.g., Web 2.0, peer-to-peer, eCommerce, etc.). People are no

longer only passive information receivers but contributors to the web via

FaceBook[27], Flickr[31], Wiki[83], Blogger[11], eBay[24], etc.

As a branch of computer security, access control has been studied for

many years, and many access control models have been proposed. However,

1

existing models are not enough to capture the dynamics in the new web

scenarios.

Solution

In order to capture the dynamic scenarios of the Information Age, we

propose a new access control model, RelBAC (short for Relation-Based

Access Control). It is a compact, flexible, natural and formalized model in

order to fit the needs to control access in the dynamic web environments.

RelBAC is illustrated in a compact Entity Relationship (ER) [19] dia-

gram and formalized in Description Logics (DL) [4]. Therefore, it has flex-

ible extensibility for attributes and contexts. An important feature is that

RelBAC represents permissions naturally as binary relations and formal-

izes them as DL roles. Yet another feature is that partial orders are defined

to model the generalization relations between subject groups (applicable

also between resource classes and between permissions), and formalized

as DL subsumption axioms. The logical formalization of RelBAC makes

it possible to transform access control problems into reasoning tasks for

off-the-shelf reasoners. In RelBAC, access control tasks such as hierarchy

management, security property enforcement and access control decision are

no longer error-prone with the help of automated reasoning.

The theory and algorithms of Lightweight Ontologies [?] are applied on

RelBAC to represent the structured knowledge about users, resources and

permissions. Encoded as lightweight ontologies, these knowledge struc-

tures offer free membership inheritance and permission propagation (no

extra policy necessary for inheritance or propagation). We use Semantic

Matching techniques [41] to find semantic similarities among the knowl-

edge of users, resources and permissions and propose new ways to use

these semantic similarities in design and reuse of access control policies.

2

INTRODUCTION

Thesis Structure

This thesis consists of the following parts.

The new challenges of the Information Age for access control are studied

in Chapter 1. To show the great need for a new access control model, a

small survey is provided on the state of the art access control mechanism

of social network applications.

Chapter 2 analyzes a set of existing access control models such as AM,

ACL, RBAC, etc. RBAC, as a prevailing state of the art access control

model in many real world applications, is carefully studied. Its advantages

such as permission inheritance in role hierarchy inspire our modeling.

In Chapter 3, RelBAC is introduced in an Entity-Relationship diagram.

Together, a Description Logic based, access control domain specific logical

framework is used to formalize the model.

Automated reasoning with RelBAC at design and run time is discussed

in Chapter 4. We show in this chapter how RelBAC facilitates adminis-

tration by transforming access control tasks such as membership and hier-

archy management, security property enforcement, access control decision

etc. into automated reasoning tasks for the reasoner.

RelBAC is adaptive to capture existing access control models. Chapter

5 shows how to capture the RBAC model with small extension of RelBAC.

Further more, by capturing the PBAC model, RelBAC shows its powerful

adaptiveness and extensibility to attributes and contexts.

In Chapter 6, a semantic web technology, i.e. the theory of Lightweight

Ontologies, is applied to build tree-like structures out of the Internet users,

web resources and contextual permissions. Control knowledge and provide

free paths for permission propagation and membership inheritance.

Semantic Matching is used to help design and reuse access control rules

in Chapter 7 with the semantic similarities found in the matching.

3

Evaluation results are shown in Chapter 8. Demo ontologies of access

control domain are designed and generated for the test. The preliminary

results bring us confidence and challenges for future work.

The structure of a RelBAC based system is also provided from an im-

plementation point of view in Chapter 9. Some practical problems such as

closed world assumption [73] and the implementation of the ‘All’ rules are

also discussed here.

Chapter 10 concludes the thesis and highlights the future work.

As this thesis might be interesting for researchers from security and

engineering domains, a general introduction to the basic Description Logic

syntax and semantics is attached in Appendix A in case of necessity.

4

Chapter 1

New Challenges for Access Control

The idea of access control dates back to hundreds of years ago in order to

protect private property. The owner controls the access of others according

to her own will. Nowadays, information explodes that various kinds of data

appear and vanish on the Internet. Internet users are hidden at the back

of their screens, and the question whether to permit or deny their requests

cannot be answered through face to face experiences. What makes things

more complicated is that the way of access is not only read or update, but

rather contexts related such as ‘compute when system load low’, ‘comment

to a tagged blog’, etc. These new changes make access control a more

interesting and important topic in the computer security domain.

In this chapter, we first introduce the formal definition of an access

control problem in Section 1.1, and list the new challenges for access control

brought by the new information technologies in Section 1.2. Section 1.3

surveys the access control mechanisms of the current online social network

communities. Section 1.4 gives a short summary and lists the challenges

and lessons for our model.

5

1.1. THE ACCESS CONTROL PROBLEM

1.1 The Access Control Problem

Intuitively, access control is to permit or deny the access of a particular

resource by a particular entity. Usually, the entity applied for the access

is called a subject; the resource is called an object and the way to access is

called an operation. In the field of computer security nowadays, a subject

could be an Internet user, an online community, a terminal or even a thread

of a running program. Information Age is a time of information explosion.

Therefore, an object can be any kind of data such as web pages, blog

entries, web directories, computational capabilities and even meta-data

such as tags, logs, indexes, semantics, etc. According to the changes of

the subject and the object, an operation is no longer simply ‘access’ only,

but varies corresponding to the field of application such as in file systems,

it could be read, update, execute, etc.; while in ubiquitous computing, it

could be compute, delegate, etc.

In today’s computer security, an access control system usually consists

of three essential services as authentication, authorization and audit. Au-

thentication verifies whether a user is whom she claims to be; authorization

assigns and checks the permission to a user that she can (not) perform some

operation on some resource (which is the original intention of access con-

trol); audit manages the security logs on what a user is doing and what

she has done. In this thesis we only focus on authorization service.

The formal definition of an access control problem is as follows:

Definition 1. Given three sets: subject S, object O and operation P, access

control means to assign a boolean value {T, F} to each triple (s, p, o) ∈

S × P × O. A ‘T’ value indicates permission of subject s to perform p on

object o, while an ‘F’ value indicates prohibition.

The assignment (s, p, o) → {T, F} could take the form of (s, p, o, T) or

(s, p, o, F) as permit/deny policy stored in an access control system. For

6

CHAPTER 1. NEW CHALLENGES FOR ACCESS CONTROL

Algorithm 1: Access Control Decision
Data: s: Subject; o: Object; p: Permission; f: boolean; KB: set of wff;

Input: Subject s, Operation p, Object o

Output: boolean

if (s,p,o,F) exists in KB then1

return false;2

else3

if (s,p,o,T) exists in KB then4

return true;5

else6

return false;7

end8

end9

security reasons, deny policy is usually supposed to be prior to a permit

policy with the same (s, p, o) triple. An authorization algorithm could be

as Algorithm 1. The return value ‘False’ on Line 7 indicates that for a

given request triple (s, p, o), if neither permit nor deny policy is found, the

system should deny the access.

1.2 New Challenges

New web technologies bring new challenges to access control. In this sec-

tion, we show these challenges with different scenarios of web resources,

ubiquitous computing and online social networks from the perspective of

resource, environment and user.

1.2.1 Web Resource

Information explosion produces vast number of various web resources.

Nowadays, huge amount of information in numerous types are available

to everyone connected to the Internet without any effective access control.

7

1.2. NEW CHALLENGES

Violence and sex are exposed to teenagers; malicious peers are pretending

to be resource providers; private photos and movies are spread to the pub-

lic; so on and so force. It is high time we have a control mechanism on top

of these resources.

However, these resources turn out some challenges that classical access

control models cannot overcome.

The size of web resources varies greatly from tens of entries on a personal

blog to a professional web directory of millions of URLs. For example, web

directory is a special kind of website that provides a list of websites or-

ganized by category and subcategory such as Yahoo! [85] and Dmoz [22].

The original Dmoz divisions were ‘Adult’, ‘Arts’, ‘Business’, ..., altogether

15 categories. Subcategories under these divisions undergo a gradual evo-

lution. Dmoz grows to 4 million URLs by Dec 3rd, 2003. Therefore, a

model adaptable to both small and large resources is in great need.

The types of web resources increase together with its size. Each new

format has its own features and attributes that should be considered by the

access control mechanism. For example, online media is gradually popular

nowadays. Musics and videos are published online with or without official

authorization. Links are redirected from site to site and it is hard to find

the source publisher and restrict the ‘free-riding’. Another example is the

commenting service provided by Web 2.0. Blogs and personal achievements

(photos, videos, etc.) can be commented. Rather than leave all the com-

ments visible for all visitors, these comments themselves are data on which

access should be controlled such as to enforce a policy that ‘a registered

user can comment on one topic only 3 times a day’. Yet another important

type is the meta-data such as tags and semantics. For example, tags such

as ‘My favorite’ or ‘Cartoon’ may disclose privacy issues and should be

considered an important type of resource.

In short, various data in different granularity and scales ask for a flexible

8

CHAPTER 1. NEW CHALLENGES FOR ACCESS CONTROL

access control model.

1.2.2 Ubiquitous Computing

Ubiquitous computing [48] has been proposed as a post-desktop model

of human-computer interaction in which information processing has been

thoroughly integrated into everyday objects and activities.

All models of ubiquitous computing share a vision of small, inexpensive,

robust networked processing devices, distributed at all scales throughout

everyday life. For example, an intelligent meeting room scenario consists

of sensors for environment such as time, temperature to adjust the tem-

perature of the meeting room when there is actually a meeting going on.

A human face recognition device is used to recognize the meeting members

from the registration profiles. A Mac1 address recognition mechanism is

used to identify the computer of a user to her registration and so forth.

Small devices should share information and cooperate in an integrated way.

The scenario proposes the following challenges as a changing environ-

ment:

Time The exact meeting time may anticipate or delay from the common

schedule and the face recognition device should interact with the time

monitor in order to adjust the information of ‘meeting time’.

Position The physical position of a user can be recognized through the

face recognition device and serves as a parameter to verify the user’s

access request. The digital devices such as laptop or PDA that can

initiate an access request in respect of the user can be coincidently

recognized in the same meeting room (e.g., with registered Mac). It is

a precondition that the device can delegate the user while being used

by the owner.
1
IEEE 802 standard.

9

1.2. NEW CHALLENGES

System The system load such as memory usage, connection number, data

flows, etc. is evolving environment parameters for access control de-

cision. With the hardware development, these parameters are moni-

tored and returned from different devices.

Thus the changing environment asks for adjustable access control model

to take use of these environment parameters.

1.2.3 Social Network

With the help of Internet, people get to know more and more others with-

out traditional face to face contact. There exist now many large social

network portals such as Blogger [11], FaceBook [27], LinkedIn [60], MyS-

pace [66], Flickr [31], etc. that offer new ways to make friends. The spirit

of Internet, ‘share’, calls up all the people to participate the online social

networks. People with common interests or opinions get together. These

‘known’ friends, in addition to many other ‘unknown’ friends, are potential

requesters that an access control system should concern.

The following features of the ‘new’ social networks complicate the access

control problem in the perspective of the subject.

Unknown Almost all the friends on the current online social networks

have never met each other before. Although sharing the same inter-

ests, they are just icons twinkling on an instant messenger window or

names under a comment of certain blog, photo or video.

Heterogeneous One’s social networks may be different from site to site.

The ‘dating sites2’ do not have a common standard for the social

networks. Moreover, different social network portals focus on differ-

ent topics such as Blogger offers blog service while Flickr deals with

2
nick for those web sites where people can make new friends

10

CHAPTER 1. NEW CHALLENGES FOR ACCESS CONTROL

photos. Therefore, even for the same person, her social information

structures are heterogeneous on different sites and almost impossible

to import or combine.

Evolving People are alive and incline to move optionally in contrast to

relatively static data. The structure of the social networks may evolve

with new groups emerging and obsolete ones vanishing. Besides, social

relations become invalid with time passing by.

The user structures are more dynamic due to these aspects and require

an expressive model adaptive to this feature.

1.3 Current Applications

In this section, we show the results of a survey on the access control services

provided by popular social network portals.

The ‘
√

’ in Table 1.1 shows that the online social network in column

offers the access control service described in the corresponding row. Here,

‘Profile’ control consists of the options on whether to show the online ‘Sta-

tus’, user ‘Photo’, and ‘Basic Info’ such as sex, birth, etc. ‘Multimedia’

control offers resource management such as traditional online media (e.g.,

‘Photo’ and ‘Video’) in addition to the new Web 2.0 data (e.g., ‘Post’ and

‘Comment’). ‘Structure’ control refers to the service to organize resources

such as photos into sets in order to control the access on sets rather than

single items. ‘Search’ control allows users to choose whether their data

would be visible in others’ searching. ‘User Control’ consists of ‘Age’ con-

trol which validate the age of the content requesters, and ‘Group’ is a

further mechanism provided in Bebo [7] and Friendster [33] that potential

users can be collected in to a group so as access right can be assigned once

for all group members. Most online social network applications aim to in-

vite new users to join the network with a method we call ‘Email Explore’

11

1.3. CURRENT APPLICATIONS

Table 1.1: Access Control of Current Social Network Portals

Facebook MySpace LinkedIn Flickr Bebo Friendster

Profile
√ √ √ √ √

Status
√ √ √ √ √

Photo
√ √ √

Basic Info
√ √ √

Multimedia
√ √ √

Photo
√ √ √

Video
√ √

Post
√ √

Comment
√ √ √

Structure
√

Search
√ √ √

User Control
√ √ √

Age
√

Group
√ √

Friend Control
√ √ √ √ √ √

Email Explore
√ √ √ √ √ √

Disturbance
√

i.e. to send invitation mail to all the contacts of a registered email address.

This mechanism sends email automatically to all addresses on the contact

list, such as a notification letter to those already registered email address

or an invitation letter to a non-registered address.

From the survey, we see that:

• There is no unified standard for access control services of online social

networks. The social network portals just offer some access control

mechanisms that they think the user would need.

• Most social network portals in our survey provide the ‘Email Explore’

service in order to use the contact list of a registered email to invite

12

CHAPTER 1. NEW CHALLENGES FOR ACCESS CONTROL

more friends to this specific online social network. This is a conve-

nient way to invite contacts to join the social network, but might

disturb those not interested. Few of the portals (e.g., only Bebo and

Friendster) in our survey provide disturbance control by which one

has options to accept whose notification message/email or whether to

accept it.

• Most social network applications in our survey focus on profile privacy.

Some (e.g., Facebook, Friendster) even provide fine-grained control on

profile entries such as personal photo, online status, status update or

other basic information.

• Social networks with different interests provide different control mech-

anisms. For example, Flickr provides control on grouped photos while

MySpace neglects everything about photo because Flickr is known as

a photo sharing site while MySpace focuses more on friends making.

• Some portals offer control based on requesters’ age, but no mechanism

to verify whether the user information filled during registration is

genuine. Therefore, it may not be as helpful as expected.

• Few support grouping of users. For example, Friendster groups users

according to geographical information (one group for a continent).

However, it is predefined and unchangeable, so it is not able to model

the evolving of users in the social networks.

• Few support structured resource management and control. Only Flickr

offers arbitrary virtual photo groups and allows to apply predefined

control policies on the group members once for all. But it is quite

simple that no further structure is supported such as the tree-like file

classification in a personal computer (PC) operating system.

13

1.4. SUMMARY

• Most of the access control interfaces are complex and not user friendly,

some are very hard to find.

Thus, a future access control system for the web should offer the following

features:

• Natural and user friendly interface. For example, people are familiar

with the folder trees of PC operating systems and we should offer

control on top of these tree-like structures.

• Flexible management. If we can offer a user friendly interface for data,

why cannot we do it on friends? To the best of our knowledge, there

are no social network portals that offer friend management with a flex-

ible manner that captures the evolving feature of the social networks.

• Extensible structure modeling. No matter how we manage to predefine

the structure for data and friend management, the web is evolving

and may need more in the future. Therefore, we should support an

extensible model for these structure dynamics.

1.4 Summary

With the maturity of Web 2.0, information technologies are no longer the-

oretical terminologies, but real world applications. They bring not only

more friendly web interactions, but also new challenges for access control.

In this chapter, we studied these challenges from different perspectives such

as object, environment and user; and made a survey on existing access con-

trol mechanisms on popular social network portals.

We will look through existing access control models in Chapter 2 to

justify that they are not suitable for the dynamic web scenarios. Therefore,

we introduce our model, RelBAC (in Chapter 3).

14

Chapter 2

Access Control Models

The meaning of access control has changed over years. Initially, access

control usually means to restrict the physical access to a facility, place or

spot to authorized persons. This is enforced mainly by a physical security

guard. Then, with the development of electronic devices, access control

has evolved into the usage of physical card access systems such as IC (In-

tegrated Circuit) card or even biometric devices. Nowadays, in computer

security, access control further evolves into the composition of three parts:

authentication, authorization and audit. Access control authentication de-

vices evolve to include ID and password, digital certificates, security tokens,

smart cards and currently biometrics. Access control audit concerns the

access procedure and results with a log for future analysis. In this thesis

we only focus on the authorization of access control which means to assign

and verify whether someone has the right to access something.

Access control models evolve with its meaning. At the very beginning,

there is no model but only tuples as discussed in Section 1.1. Then, access

control matrix appears in [10]. Afterwards, access control list emerges to

specify the user identities and the privileges granted to them. Later it

evolves to access right digits attached to the resources in an operating sys-

tem such as Linux. Then, RBAC [74] model is invented for large enterprise

15

2.1. EARLY ACCESS CONTROL MODELS

solutions. Furthermore, RBAC has been extended into different models

such as PBAC[15], GRABC[65], TRBAC[8], GTRBAC[55], etc. Recently,

usage control model (Ucon) is proposed in [72] to formalize obligations,

conditions, continuity (ongoing controls) and mutability in addition to au-

thorization.

In this chapter, we make a survey on the existing access control models.

The early access control models are surveyed in Section 2.1 including access

matrix (AM), access control list (ACL), discretionary access control (DAC),

mandatory access control (MAC) etc. Role-based access control (RBAC),

as the prevailing important access control model is discussed in Section 2.2.

Then we summarize the state of the art formal representations of access

control models in Section 2.4 and collect the inspiring ideas of these models

and formalizations in 2.5.

2.1 Early Access Control Models

Ever since its emergence long long ago for the first surplus property, con-

tinuous efforts have been devoted to improving access control. From the

user ability point of view, access control models could be divided into dis-

cretionary or mandatory access control. From the core component point

of view, there exist AM, ACL, etc. In general, early access control models

are simple and usually focus on access control system in real domains such

as military, enterprise, government, etc. We will survey in this section on

these early access control models.

2.1.1 Discretionary And Mandatory Access Control

A system is said to have Discretionary Access Control (DAC) [1] if the

creator or owner of an object can fully control the access to the object. A

typical example is the file management under Linux, where the creator of

16

CHAPTER 2. ACCESS CONTROL MODELS

the file has the full access to the file and also the right to assign to the other

users any access to the file. In contrast, a system is said to have Mandatory

Access Control (MAC[1], also known as ‘non-discretionary access control’

in security literatures) if the system administrator, instead of the owner,

takes charge of the full access control.

In a MAC based system, the security policy is centrally controlled by

a security policy administrator; users do not have the ability to override

the policy, for example, an operation to grant access to files would be re-

stricted. However, DAC governs the ability of subjects to access objects,

but allows users to make policy decisions and/or assign security attributes.

A classic Unix system of users, groups, and rwx (for read, write and exe-

cute) permissions is an example of DAC. MAC-based systems allow policy

administrators to implement organization-wide security policies, unlike in

DAC, users in MAC cannot override or modify a policy, either accidentally

or intentionally. This allows security administrators to define a central

policy that is secured (in principle) to be enforced for all users.

Generally speaking, MAC is useful rather in large access control sys-

tems with centralized access control servers and administrators. DAC is

more flexible and suitable for small solutions where the owner determines

the access control policies. However, currently on the web, there is no

big difference between the owner and the administrator as the advancing

information technologies lowers the threshold of technical operations. For

example, on Flickr, the photo owner is the one in charge of control policy

definition and she is able to do so because to define a policy is just to cross

some check boxes on a specific web page for access control.

2.1.2 Access Matrix

Access Matrix model (AM) is introduced by B.Lampson [10] as one of the

earliest access control models. It is a very general description of operating

17

2.1. EARLY ACCESS CONTROL MODELS

Table 2.1: Example of Access Control Matrix

RIGHT server1 file2 device3 page4

userA connect read,write write read

processB connect execute read update

system protection mechanism.

A security system based on AM model consists of a set of objects O,

which is the set of resources that need to be protected (e.g., pages, files)

and a set of subjects S, that consists of all active users (e.g., sessions,

processes). There exists a set of rights R of the form r(s, o), where s ∈ S,

o ∈ O and r(s, o) ∈ R. A right thereby specifies the kind of operation a

subject is allowed to perform on an object. So the pairs build a matrix

with the column as O and rows as S (or vise versa) and the contents of

the matrix show possible right R as is shown in Table 2.1.

Because AM model does not define the granularity of protection mech-

anisms, it can be used as a model of the static access permissions in any

type of access control systems. Implementation of AM for the current web

scenarios as a two-dimensional array would suffer excessive memory costs.

2.1.3 Access Control List

In computer security, an access control list (ACL) is a list of (subject,

operation) pairs attached to an object as shown in Figure 2.1. It is not

tractable who invents the model but the ACL model has been implemented

in many applications such as Microsoft Windows, Unix-like and Mac OS

X operating systems. In Dec 2000, it becomes part of the 4th version of

Network File System (NFS4) [76].

An access control list specifies who is allowed to access the object and

what operations are allowed to be performed on the object. In an ACL-

based security system, when a subject requests to perform an operation on

18

CHAPTER 2. ACCESS CONTROL MODELS

Figure 2.1: ACL Model

Figure 2.2: ACL in a Linux Operation System

an object, the system first checks the list for an applicable entry in order

to decide whether or not to proceed with the operation.

The ACL model is widely used in file management of different operating

systems such as Microsoft Windows, OpenVMS, Linux and Mac OS X.

Figure 2.2 shows a typical ACL in a linux OS, Ubuntu. The 9 digits at the

beginning of each line specify the access rights (read, write and execute)

for different users (owner, group and other).

A user identifier (UID) is the principal identifier of a subject. In file

systems, the ACL is a data structure, usually a table, containing entries

(known as access control entries ACE) that specify the rights of individual

users or groups to specific system objects, such as a program, a process,

or a file. Each accessible object contains an identifier to its ACL. The

privileges or permissions determine specific access, such as whether a user

can read from, write to, or execute an object. In some implementations an

ACE can control whether or not a user, or group of users, may alter the

ACL on an object.

In contrast to the AM model, ACL saves the space of the empty entries

in the access control matrix.

19

2.2. ROLE-BASED ACCESS CONTROL

2.2 Role-Based Access Control

Role-Based Access Control (RBAC) is proposed in [28] by D.Ferraiolo and

R.Kuhn as a new generation of access control mechanism in contrast to

Access Control Matrix (AM) and Access Control List (ACL). RBAC in-

troduces a new concept: role as the intermediate between user and per-

mission. In RABC, a permission specifies the ability to perform certain

function on certain object with a (operation, object) pair. Now, RBAC

has been adopted as an ANSI/INCITS standard [29]. It is a predominant

model for access control in many fields such as commercial enterprises and

governments.

The core concept of RBAC [28, 29] is role, which is defined by a set

of permissions or a set of responsibilities that the user in this role can

perform. Similarly to a role (or position) in the real world, a RBAC role

relates to some permissions1 to perform some operations on some objects.

Users are not directly granted to any right as in AM or ACL, but have to

activate a role that has already been assigned to him/her.

This greatly simplifies the management of permissions because a pre-

defined role is rather static to the permissions. A user can be assigned to

more than one role, but not necessarily all the assigned roles are activated

to perform a certain task. R.Sandhu et al. introduced in [74] the concept

of session into the RBAC model. A session is regarded a set of assigned

roles activated for certain tasks. With control on user-role assignment, it

is easy to restrict a user to behave as two disjoint roles such as the teller

and the auditor in a bank scenario. This restriction can be performed by

the session management at run time so that the role teller and auditor can-

not be activated at the same time for the same user. Role hierarchy and

related constraints are introduced as a feature of RBAC that permissions

1
To be differentiated with RelBAC permission.

20

CHAPTER 2. ACCESS CONTROL MODELS

Figure 2.3: RBAC Model

may propagate through the role hierarchies.

We refer to the RBAC model [29] in Figure 2.3 as the standard and

study the constraints, administrations and some extensions of RBAC in

the following subsections.

2.2.1 The RBAC Model

As shown in Figure 2.3, the core of RBAC [29] is the definition of role,

which originates from social positions such as the manager in an enterprise

solution. The organism structures are relatively static and can be prede-

fined. The advantage of role predefinition is that a permission assignment

to an individual user is simplified to user-role membership declaration and

the corresponding permission-role assignment has been pre-designed be-

fore. Thus, user-object connection is ‘broken’ by the role as a mediator.

At run time, user-permission assignment is linear to the roles rather than

to the Cartesian product of the operations and the objects.

The RBAC model has the following unary components:

• USERS the set of all subjects;

21

2.2. ROLE-BASED ACCESS CONTROL

• ROLES the set of all roles;

• OPERATIONS (OPS) the set of all operations;

• OBJECTS (OBS) the set of all objects;

• SESSIONS the set of all sessions;

The following binary components of RBAC:

• PERMISSIONS (PRMS) the set of all pairs as OPS ×OBS;

• USER ASSIGNMENTS (UA) the set of all pairs as

USERS ×ROLE;

• ROLE ASSIGNMENTS (RA) the set of all pairs as

ROLES × PRMS;

• ROLE HIERARCHY (RH) the set of all pairs (r1, r2) as

ROLES×ROLES representing a partial order � where r1 � r2 only

if all permissions of r2 are also permissions of r1 and all user of r1 are

also user of r2;

• user sessions the set of functions as u : USERS → 2SESSIONS;

• session roles the set of functions as s : SESSIONS → 2ROLES;

• authorized users the set of functions as r : ROLES → 2USERS all

users assigned to r and all r� that r� � r.

The advantages of the RBAC model are due to the separation of users

from the permissions. The roles serve as a mediator between the users and

the permissions such that the access rights are granted directly to roles and

a user can get a permission only by activating a corresponding role (that

she is allowed to activate). This feature makes it possible to define the role

hierarchy and grant to the roles appropriate access at design time; and only

22

CHAPTER 2. ACCESS CONTROL MODELS

manage the correspondence between users and roles at run time. Thus the

complexity of management task reduces from USERS × OPS × OBS to

USERS ×ROLES.

2.2.2 Separation of Duties

Separation of duties (SoD) is a principle well-known in financial account-

ing systems in which for example, no one should be assigned the duties

to deposit cash and to reconcile bank statements. In general, the prin-

ciple enforces conflict of interest policies, as a result of a user authorized

of conflicting permissions. If a sensitive task consists of two steps, this

requirement states that a different user should perform each step. More

generally, when a sensitive task is comprised of n steps, a SoD policy re-

quires the cooperation of at least k (2 ≤ k ≤ n) different users to complete

the task.

In [29] D.Ferraiolo, R.Sandhu et al. distinguish static SoD with dynamic

SoD according to the time this constraint is enforced. Static separation

of duties (SSD) enforces constraints on the assignment of users to roles at

design time. Membership in one role may prevent a user from membership

of one or more other roles. With the role hierarchy, inherited roles should

be considered for this kind of prevention. Dynamic separation of duties

(DSD) differs from SSD by placing constraints on the roles that can be

activated within or across a user’s session(s) at run time. SoD in RBAC is

achieved by designing policies to specify mutually exclusive roles (for SSD)

or mutually exclusive activated roles (for DSD).

2.2.3 Administration

Administration tasks of RBAC model was addressed in [29] and carefully

studied in [23]. It consists many detailed tasks as listed in Table 2.2 clas-

23

2.2. ROLE-BASED ACCESS CONTROL

Table 2.2: Administration Functions for RBAC

Administrative System Support Review

Add/Delete User Create Session Assigned Users

Add/Delete Role Add Active Role Role Permissions

Assign/De-assign User Check Access Session Roles

Grant/Revoke Permission Delete Session Assigned Roles

Add/Delete Inheritance Drop Active Role User Permissions

Add Ascendant ... Session Permissions

Add Descendant Authorized Users

... Authorized Roles

...

sified in the following three categories:

Administrative Functions Creation and maintenance of components such

as adding a new user to the model. Additional hierarchical administra-

tive functions for hierarchical RBAC model such as to add inheritance.

Supporting System Functions Implementation to support model con-

structs such as session management and session-role activation man-

agement.

Review Functions Review the results of administrative functions such

as to get the permissions of a user or get the assigned users to a role.

2.2.4 Extensions

With the study of RBAC, many extensions have been proposed. Moyer et

al. extend RBAC with a generalized model GRABC [65] in which environ-

ment and object roles are used to enhance expressiveness.

In [17], Chae et al. extend RBAC to support object hierarchy such that

the efficiency brought by role hierarchy can be applied.

24

CHAPTER 2. ACCESS CONTROL MODELS

Time related extensions are proposed by E.Bertino et al. in [8]. J.Joshi

et al. generalize them into [55, 54] as the GTRBAC model which allows

expressing periodic as well as duration constraints on roles, user-role as-

signments, and role-permission assignments.

Purposed Based Access Control (PBAC) model is proposed in [16] by

J.Byun et al. The PBAC model is designed for relational database where

purpose information is associated with a given data element to specify the

intended use of the data. They evaluate the ways to verify purposes and

address the problem of how to determine the purpose of a given user when

she access certain data.

2.3 Trust-Based Access Control

Another important access control model simulates the real world human

relationships with the concept of trust (or reputation). Therefore, we call

this kind of access control models as Trust-Based Access Control (TBAC).

The trust is usually formalized as a quantified variable with a gossip based

algorithm. In a TBAC system, the trust value is the standard for con-

trol decision. Once the value is above the threshold predefined, all access

requests of the user are accepted; otherwise, all denied.

An example of successful reputation management is the online auction

portal eBay [24]. In the reputation system of eBay, buyers and sellers

can rate each other after each transaction, and the overall reputation of a

participant is the sum of these ratings over the last 6 months. This system

relies on a centralized system to store and manage these ratings.

The trust value lies on the behavior metrics such as follows.

Honesty The service claimed is coherent to the behavior.

Quality The service quality should be as expected.

25

2.3. TRUST-BASED ACCESS CONTROL

Reliability The service should be available to some extend.

A basic TBAC model assumes a centralized trust server which knows

about all peers, manages all the trust values of each peer according to the

standards above and provides reliable answers to trust queries about peers.

In the early days of online communities, some portals such as web of trust

[68] and friend of a friend [67] provide the social networks for the Internet

users together with the trust networks.

With the online community increasing enormously nowadays, fully P2P

networks become popular. The Social Network applications mentioned in

Section 1.3 are real examples of online communities.

Existing reputation systems on communities lie in two categories: use

one’s previous experience with an agent to estimate its reliability [53]; or

use small-world phenomena to build chains of acquaintance to find other

agents who can vouch for the reputation of a peer [46, 86]. In a full P2P

scenario, trust calculation cannot rely on a centralized trust server. The

gossip algorithm emerges as a simulation of the real world human relations.

The trust can be accumulated not only by users directly interacted with,

but also indirectly connected ones.

The preliminary gossip algorithm in Algorithm 2 may not terminate

in an infinite network because on Line 7 there is a recursive call for the

algorithm such that each neighboring peer will calculate the trust with

its own neighbors. The algorithm relies on the transitivity of trust and

multiplies the trust of peers through the path to the target peer. Whether

it is a good choice among other ways of using this path is not the scope of

this thesis. We just show that this is a thread of research for access control

on communities.

The main feature of a trust-based system is the ‘once for all’ authen-

tication. Every coin has two sides. TBAC is good because all the control

relies on a single standard, the trust only. Once the trust value reaches

26

CHAPTER 2. ACCESS CONTROL MODELS

Algorithm 2: Gossip

Data: peer: struct of {id: int; trust: float; neighbors: peer[];}

Input: peer current, peer target

Output: float target.trust

int i = 0;1

target.trust = 0;2

while i<current.neighbors.length do3

if target.id = current.neighbors[i].id then4

return current.neighbors[i].trust;5

else6

target.trust+=current.neighbors[i].trust∗Gossip(current.neighbors[i],target);7

end8

i = i + 1;9

end10

return target.trust;11

the threshold, all the access rights are granted and all requests are ac-

cepted. This is efficient with accuracy or granularity sacrificed as a trade-

off. TBAC is too coarse grained upon the assignment because permissions

are either all accepted or all denied without anything in between.

2.4 Formal Methods for Access Control Models

New access control models emerge for new challenges. The more compli-

cated access control systems implemented, the more management tasks for

the administration. Nowadays, it is hard to handle the access control man-

agement tasks by hand. Computer aided tools are proposed to help design,

manage and implement the access control models.

We classify these tools into two categories, non-logical formalisms such

as set theory, entity relationship diagram, XML etc. and logical formalisms

such as algebras, First Order Logic and Description Logics. A survey will

be shown in this section on how these tools are used on AC.

27

2.4. FORMAL METHODS FOR ACCESS CONTROL MODELS

2.4.1 Non-Logical

Set theory, as we talk about, is a mathematical tool to formalize mem-

bership relations between individuals and their collections. It is used by

R.Sandhu et al. to formalize RBAC in [74]. In Section 2.2, we have shown

how to apply the set theory on the RBAC model. A role is modeled as a

set and a user becomes an element of the set by the user-role assignment.

Set theory can be regarded the basic knowledge representation in Infor-

mation science. Other theories such as different logics are all based on set

theory (with additional semantics).

Entity Relationship (ER) model [19] is another powerful tool. It is

specially popular for an abstract and conceptual representation of data. As

we see from Section 1.1, the basic access control problem is a representation

of the relations among subject, operation and object, as described by the

ER model in Figure 2.4. The problem can be modeled as a 3-ary relation

among the subject, object and operation.

Figure 2.4: The ER Diagram of Basic Access Control

Yet another representation tool is the XML (eXtensible Markup Lan-

guage) [84]. An XML based language, XACML (eXtensible Access Con-

trol Markup Language) [25] for representing knowledge about access con-

trol is approved as an OASIS [32] (Organization for the Advancement of

Structured Information Standards) standard in Feb 2003. In February of

2005, XACML version 2.0 is approved as an OASIS Standard, along with

some profiles including ‘Core and Hierarchical Role Based Access Control

28

CHAPTER 2. ACCESS CONTROL MODELS

(RBAC)’. It provides a very flexible language to express access control that

takes use of virtually all sorts of information as the basis for decisions. It is

a functional superset of other popular access control schemes such as ACL,

RBAC, etc. The language is extremely flexible with the XML syntax. Al-

though it does not offer clear semantics, to use a web language to express

access control is a good attempt.

2.4.2 Logical

With the evolving complexity of access control, the demand increases for

automated administration tools. As formal logics have been used as the

main method to achieve automated reasoning for computer aided tools,

researchers made attempts to take use of logics to represent and reason

about the access control domain.

To represent and reason about the specific access control models list in

previous sections, different logical formalisms are studied e.g., logic algebra

[2, 61, 13, 21], logic programming [9], Modal Logic [56, 18], Description

Logic [89, 17], etc.

Logical Algebra

M.Abadi et al. study some of the concepts, protocols and algorithms for

access control in distributed systems from a logical point of view and pro-

vide in [2] a logical language for ACL model together with some theories

for deciding whether a given request should be granted. They focus on

some practical aspects of distributed access control such as certification

and delegation. However, the ACL model in their proposal has to face

the fast complexity increase because of the various web resources. More-

over, the algebra they propose has to be accompanied with extra reasoning

algorithms that are not supported by general logic reasoners.

29

2.4. FORMAL METHODS FOR ACCESS CONTROL MODELS

F.Massacci presents a logical algebra for RBAC in [61]. The algebra

relies on a tableaux method for reasoning which comes from the previous

work of Modal Logic and Intuitionistic Logic. Now this method has been

well studied and applied on Description Logic reasoners. The work shows

a direction to explore the access control problem in Description Logics.

K.Broda et al. propose a Compiled Labeled Deductive System, called

ACCLDS [14], for reasoning about role-based access control in distributed

systems, which is built upon Massacci’s tableaux based system. ACCLDS

overcomes some of the limitations of of the system in [61] by combining

its multi-modal propositional language with a labeling algebra that allows

reasoning explicitly about dynamic properties of the accessibility relations.

This facilitates a sound, complete, and more natural reasoning mechanism

than [61]. They have also studied the limitations of the usefulness and

their relation to the initial attempt in [2]. Their solution is based on First

Order Logic and referred to a public theorem prover OTTER [62].

The HP lab devotes in research of access control and provides in [21] an

account of fundamental situations in distributed systems using a resource-

based process calculus and a hybrid of Hennessy-Milner (a Temporal Logic)

and resource logic (a Modal Logic). This yields a consistent account of

operational behavior and logical reasoning for access control, that includes

an analysis of co-signing, roles and chains-of-trust as has been stressed in

[2]. The HP proposal focuses on real application domains and the hybrid of

algebra and logic makes the system realistic for the concrete access control

problems. This tells us that real world problems might not be solved with

one logical tool such as a well studied algebra or logical framework, but

rather a hybrid solution that uses advantages of different frameworks might

achieve the goal.

30

CHAPTER 2. ACCESS CONTROL MODELS

Logic Programming

For logic programming approaches, Prolog is the most widely used lan-

guage. E.Bertino et al. provide a logical framework [9] for reasoning about

discretionary, mandatory and role-based access control models based on C-

Datalog [47] which is an object-oriented variation of Datalog [80, 81]. Each

instance of the proposed framework corresponds to a C-Datalog program,

interpreted according to a stable model semantics.

The use of logic programming on access control presentation has the

advantage to formalize the state transitions. This thread of work is not

the scope of this thesis.

Description Logic

Description Logics [4] (a set of logical frameworks with different expres-

siveness) arouse the interests of computer science scholars by their expres-

siveness and decidability. Many literatures [89, 17, 30] attempt to use

Description Logic to formalize access control models and use state of the

art Description Logic reasoners to prove security properties.

C.Zhao et al. in [89] use description logic to represent RBAC. In their

proposal, users, roles, sessions and permissions are formalized as DL con-

cepts but objects are regarded encapsulated inside permissions together

with operations. This results in explosion of the permission and the diffi-

culty to specify policies about objects. Moreover, they propose to use only

existential restriction of DL for permission assignments. This does not

make full use of the powerful expressiveness of DL. Anyway their proposal

is an early attempt and inspiring in the use of DL on access control.

Another formalization with description logic is proposed by J.Chae et

al. to formalize RBAC with DL in [17], where an operation is represented

by a DL role. But their system has several flaws as follows.

31

2.5. SUMMARY

• Miss use of existential quantifier. In the semantics of their formaliza-

tion, the assignment with formula ‘Admin � ∃CanRead.Log’ assigns

the read access to all the administrators onto all the log files. But

classic DL semantics of this formula enforces only some connections

from administrators to the log files but not all.

• Awkward use of unnecessary DL roles such as ‘assign’ and ‘classify’.

These DL roles are supposed to connect users to RBAC roles or ob-

ject to object classes but ABox mechanism of DL serves well in this

purpose.

However, their work is still meaningful to us in the following ways.

• The way they formalized operation is inspiring as it is natural to rep-

resent an action (of the operation from a subject to an object) with a

binary relation rather than a unary concept.

• They extend RBAC with the object hierarchy similar to the user hi-

erarchy which facilitates the permission propagation.

Recently, T.Finin et al. propose to use OWL [69] as the formalization of

the RBAC model in [30]. They provide two ways to formalize a RBAC role,

as class or as attribute. N3Logic is used together with DL subsumption

reasoning. Authorization decision queries can be answered using DL rea-

soners in their system. Their work is a variation of applying DL on RBAC

representation, and OWL can be a candidate language we implement our

model.

2.5 Summary

For the general access control problem described in Chapter 1, several

access control models are proposed for different domains such as military

32

CHAPTER 2. ACCESS CONTROL MODELS

or commercial solutions. AM is one of the early attempts and applies in

those early access control systems; ACL is prevailing in operation systems

and still active in some current solutions because of its simplicity; MAC

is suitable for military use while DAC serves well in urban domains such

as commercial enterprises; RBAC is popular specially for large commercial

solutions but not restricted to; etc. When the new challenges come with

the new Internet technologies as described in Chapter 1, these models are

no longer suitable.

However, they are inspiring in the following aspects:

• AM is old, but has the advantage to control the access in both the

subject and the object point of view, although it suffers the sparse

matrix and waste of space.

• RBAC is prevailing currently, but focuses on static predefined role

hierarchies which is not suitable for the highly dynamic state of the art

web scenarios. Yet the idea of separate users from direct assignment

to the permissions is wonderful and we can borrow this idea to our

new model.

• TBAC is new in nowadays networks and especially successful (up to

now) for peer to peer architectures. We may take it as an interesting

attribute that can be supported by our new model.

We will show in the next chapter how we build our model considering

these existing models, facing those challenges mentioned in Chapter 1.

33

Chapter 3

RelBAC Model

In this chapter, we build a novel access control model: Relation-Based

Access Control, shorted as RelBAC. It is a new model for the Information

Age to face the new challenges as discussed in Chapter 1. The main novelty

of this model is that a permission with the intuition as the operation that a

subject is allowed to perform on an object, is modeled as a binary relation

between subject and object. Thus, it is decoupled from the subject and

the object, and treated as a first class component of the model.

The RelBAC model has at least the following advantages.

• Permissions are decoupled from subjects or objects so that we can

model the dynamics of permission evolution easily.

• Subjects and objects in RelBAC can be classified into complex (typ-

ically hierarchical tree-like) structures such as business organisms or

online social communities. No matter these structures are relatively

stable or rather vulnerable, RelBAC offers a way to model these evolv-

ing hierarchies.

• The RelBAC model provides fine-grained access control with different

granularity such as one, some, minimum m, maximum n, exactly k and

all from both perspectives of subjects and objects.

35

3.1. ER MODEL OF RELBAC

• Based on an Entity Relationship Model, RelBAC can be easily de-

signed and integrated into any large software systems. Moreover, this

brings great extensibility to capture new attributes, contexts, etc.

• Formalized with a Description Logic based logical framework, RelBAC

offers compact representation of access control rules with clear se-

mantics and cardinality expressiveness, in addition to reasoning abil-

ity that facilitates access control management and security property

analysis.

The rest of the chapter is organized as follows: Section 3.1 describes the

RelBAC model with an ER diagram; Section 3.2 shows the Description

Logic based logical framework for RelBAC and discusses in details how

to build access control rules in this framework. Section 3.7 summarizes

the correspondence between fine-grained access control assignments and

RelBAC rules.

3.1 ER Model of RelBAC

The RelBAC model proposed in [44] has evolved into a more compact

form with the removal of unimportant parts. Basic components of the

RelBAC model are illustrated with the Entity Relationship (ER) diagram

in Figure 3.1. According to the standard format of ER diagrams [19], we

have SUBJECT, OBJECT as entity sets and PERMISSION as relations. Here

we get into details of each component.

Figure 3.1: The ER Diagram of the RelBAC Model

36

CHAPTER 3. RELBAC MODEL

SUBJECT: a set of subjects that intend to access some resources. The

loop on SUBJECT represents the ‘IS-A’ relation between sets of subjects.

The largest subject set is the collection of all the subjects concerned (e.g.,

all people of University of Trento).

OBJECT: a set of objects or resources that subjects intend to access. The

loop on OBJECT represents again an ‘IS-A’ relation between sets of objects.

The largest object set is the collection of all the possible objects of the

system (e.g., anything with a URI).

PERMISSION: the intuition is that a permission is an operation that sub-

jects can perform on objects. To capture this, a permission is named with

the name of the operation it refers to (e.g., Read or Update). A PERMISSION

is a relation between SUBJECT and OBJECT, namely a set of (subject, object)

pairs (e.g., Update(Ilya, Code1.0)). The loop on PERMISSION represents

the ‘IS-A’ relation between permissions.

RULE (short for access control rule): a RULE associates a PERMISSION to

a specific set of (SUBJECT,OBJECT) pairs by two means. First is to state

that a set of SUBJECTs is a subset of those that can access a given set of

OBJECTs with a given PERMISSION, and we call it a subject-centric RULE;

the other way is to state that a set of OBJECTs is a subset of those that can

be accessed by a given set of SUBJECTs with given PERMISSION, which we

call object-centric RULE. These two kinds of rules offer us different views

of the access control system such that we can define rules from either the

subject or the object stand.

For example, in Linux system, access rights are attached to files. Given

a file, this makes it easy to check the accessibility of a user to the file.

But given a user it is hard to get all the objects that can be accessed by

the user or to grant some given user the access rights to specific objects.

RelBAC offers the object-centric rule which makes this as easy as to look

from the object column in an access control matrix [10]. Moreover, in

37

3.1. ER MODEL OF RELBAC

Figure 3.2: SUBJECT and OBJECT Hierarchies

addition to the inner relations among subjects or objects, we can even

declare the relation among permissions without mentioning the subject

or object involved. This makes the permission, formerly an association

tightly banded to subject or object such as in RBAC [29], now a first

class entity in the system. Thus, context information such as system load

or connection number in a pervasive environment could be encoded into

specific permissions.

As an example of RelBAC, we have an access control problem in the

scenario of Social Desktop [75]. In Figure 3.2 and 3.3, we show exam-

ples of SUBJECT, OBJECT and PERMISSION hierarchies respectively. The

squares represent sets and circles represent individuals (e.g., ‘Friend’ and

‘Code’ are subject and object sets respectively; ‘Hao’ and ‘Shrek II’ are

individual subject and object). Similarly, squares in Figure 3.3 represent

sets of permissions while circles represent individual permissions which are

(subject, object) pairs (e.g., ‘(Rui, code1.0)’ is an individual permission

of ‘Read’). The lines connecting items represent the ‘IS-A’ relationship.

38

CHAPTER 3. RELBAC MODEL

(a)

(b)

Figure 3.3: PERMISSION Hierarchies

Thus in detail, Rui’s social network is partly shown as the left of Figure 3.2

where he has mainly two groups of people, one from KnowDive research

team and the other as friends. In the research team Hao is a coder, and

Ilya is a team manager. There is a subgroup of soccer fans in friends with

more specific subgroups supporting different soccer teams ‘Juventus’ and

‘AC Milan’ (two professional soccer teams in Italian Serie A). Rui has also

some specific close friends in the network. For desktop resources, Rui’s

working stuffs such as codes and publications are organized in a resource

tree together with files for entertainment. The subject and object hierar-

chies follow the intuition that the lower in the hierarchy, the more specific

items are collected.

Now something more interesting comes! Permissions may take the from

of a tree or even a directed acyclic graph (DAG). Here in Figure 3.3-a we

state that to write and to delete a file are two more specific (in the sense less

pairs as instances) operations than to read; to update is even more powerful

(with less pairs) than to write or to delete. The circle denoting a pair

(Ilya, Code1.0) under ‘Update’ square represents that Ilya can update the

Code1.0 and the pair at bottom of Figure 3.3-a tells us that Rui can write

39

3.1. ER MODEL OF RELBAC

Code1.0 and Hao can read (view) the video named ‘Shrek II’. Figure 3.3-b

shows that permissions may take the form of an inverted tree. Contexts

such as accessing time and system load are important standards for access

control and we can have various permissions defined accordingly. These

permission hierarchies might be different even for the same environment

by different administrators, e.g., one may consider system load first and

another emphasizes on accessing time instead. To be precise, Figure 3.3-a

is a DAG when we take the two square labeled ‘Update’ the same. Then,

Ilya can not only update, delete and read Code1.0, but can also perform

write access on it.

As we mentioned in Section 2.4, Entity Relationship (ER) Model is an

abstract and conceptual representation of data. It is widely used in soft-

ware engineering to model a relational schema, and produce a conceptual

schema or semantic data model of a system. Therefore, an ER model has

the advantage to be easily integrated into system design. Also, as it is

adaptive in almost all application domains (no matter rural or military,

commercial or educational), RelBAC inherits the adaptiveness to be able

to model the access control in a wide variety of domains.

Let us see the example of the Semantic Desktop scenario at the be-

ginning of this section. The two trees in the Figure 3.2 describe part of

Rui’s social network and semantic desktop resources (as we cannot show

all his social network and resources). In addition, as shown in Figure 3.3,

permissions may form complex structures too.

The information can be collected as the following:

User : {Rui, Hao, Ilya,...}

User Group : {Rui’s Social Network, KnowDive,...}

Resource : {code1.0, Milan Derby 2008, Shrek II,...}

Resource Class : {Rui’s Semantic Desktop, Work, Entertain,...}

40

CHAPTER 3. RELBAC MODEL

Figure 3.4: ER Model of the Social Desktop Scenario

Operation : {Read, Write, Update,...}

Policy : {‘All friends are allowed to read musics’, ‘coders are allowed to

update Alpha codes’, ‘a close friend is also a friend’, ‘those allowed to

update are also allowed to read the same object’,...}

Here we use the word ‘Policy’ in a broad sense for all the entries in the

knowledge base of an access control system, including not only the access

control rules but also the description of systems such as the ‘IS-A’ relation

between groups, etc.

As an instantiation of RelBAC shown in Figure 3.1, we can represent

the hierarchies of the Social Desktop scenario with the ER diagrams in Fig-

ure 3.4. Rui’s social network and desktop resources may change frequently,

while the ER diagram can be extended to capture these changes.

41

3.2. LOGICAL FRAMEWORK OF RELBAC

3.2 Logical Framework of RelBAC

Inspired by the practices in Section 2.4.2, Description Logic stands out for

RelBAC representation. It has at least the following advantages: expres-

siveness, decidability, state of the art reasoners and coherence with ER.

• DL is a sub-set of First Order Logic, but still preserves much expres-

siveness such as value restriction which can be easily applied on the

access control domain with compact syntax.

• DL is a decidable sub-set of First-Order Logic (FOL) and complexity

problems corresponding to certain constructors have been studied by

logicians for years.

• There are many off-the-shelf reasoners for automated reasoning of DL

knowledge bases. A lot of scholars are working on building algorithms

and reasoners for DL.

• With the original purpose to represent related database, DL and ER

share some interests in common. It is easy to represent an ER model

in DL.

Following the relationship between ER and DL as discussed in [4], the

atomic elements of RelBAC are concepts, which intuitively can be thought

of as names for sets of objects. We also have DL roles which, in turn, can

be thought of as names for binary relations.

We use ALCIOQ(¬) as the DL for RelBAC. Taking into account the

necessary access control components, we have the following:

U1, ..., Um | (users)

O1, ..., On | (objects)

P1, ..., Ps | (permissions)

42

CHAPTER 3. RELBAC MODEL

where Ui(i = 1, ...,m) are concepts for users, such as Friend or KnowDive;

Oj(j = 1, ..., n) are concepts for objects, such as V ideo or Code; Pk(k =

1, ..., s) are roles for permissions defining user-object pairs. Examples of

permissions are conventional file operations such as Read and Write or

some other field functions such as Cash and Audit. In this thesis, we use

italic words that begin with capital letter(s) as concept and role names.

The syntax and semantics of RelBAC is clear according to ALCIOQ(¬).

RelBAC uses subsumption ‘�’ to represent partial order ‘≥’ relation

among user groups, among object classes and among permissions. Thus,

a ‘generalization (IS-A)’ relation is translated into a subsumption axiom.

Then ‘≥’ helps to build inheritable hierarchies among subjects, among

objects and among permissions.

Ui ≥ Uj iff Ui � Uj (3.1)

Oi ≥ Oj iff Oi � Oj (3.2)

Pi ≥ Pj iff Pi � Pj (3.3)

3.3 General Rules

Rules in RelBAC usually take the form of inclusion formulas. Given the

concepts U , O and a permission P , a permission assignment policy has

one of the following forms:

U � ∃P.O (3.4)

O � ∃P−1.U (3.5)

U � ∀P.O (3.6)

O � ∀P−1.U (3.7)

43

3.3. GENERAL RULES

For example, to say that all the close friends can download some music(s),

we can use Rule 3.4 as

Friend � ∃Download.Music;

to say that all the music can be downloaded by some friend(s), we use Rule

3.5 as

Music � ∃Download−1.F riend;

to say that the friends can download only the music(s), we use Rule 3.6 as

Friend � ∀Download.Music;

to say that the code can be read only by the KnowDive members, we use

Rule 3.7 as follows.

Code � ∀Read−1.KnowDive

Cardinality related rules can be expressed as:

U �≥ nP.O (3.8)

O �≥ nP−1.U (3.9)

U �≤ nP.O (3.10)

O �≤ nP−1.U (3.11)

For example, to say that each KnowDive member should program for min-

imum 1 project code, we use Rule 3.8

KnowDive �≥ 1 Program.Code;

to say that each project code should be programed by maximum 2 KnowDive

members, we use Rule 3.11

Code �≤ 2 Program−1.KnowDive.

44

CHAPTER 3. RELBAC MODEL

Here, we use only two examples to illustrate the minimum value restriction

formed user-oriented rule and the maximum value restriction formed object-

oriented rule. The other two forms of cardinality related rules are similar.

In RelBAC, we do not need special rules to restrict access, which is

commonly referred to as ‘prohibition’. Because we can achieve this kind

of restricts by saying that a set of users is a subset of the complement set

of those allowed to access something. Or symmetrically, a set of objects is

a subset of the complement set of those allowed to be accessed by someone.

For example, Coders are not allowed to update the publications can be

enforced as the following rule.

Coder � ¬∃Update.Publication

3.4 Rules Involving Instances

In DL, an instance related axiom is called an ABox and we find it also appli-

cable in RelBAC. An instance of a user group, object class or permission

describes a state of the access control system. In RelBAC, policies about

instance are called access control state S. We use words starting with lower

case letter(s) to denote names of instances such as hao, rui, shrek II...

With the names for concepts and roles, we can describe which concept an

instance belongs to or which role a pair of instances belongs to.

For example, KnowDive(rui) declares rui denoting the user ‘Rui’ is a

KnowDive group member. V ideo(shrek II) means that the file denoted

by shrek II belongs to the object class Video. Download(hao, shrek II)

declares the pair (hao, shrek II) is an instance of Download with the in-

tuition that Hao is allowed to download the video Shrek II.

We can assign permissions to a collection of users with the set construc-

tor such as to give Update permission of Code to hao and ilya. We don’t

45

3.4. RULES INVOLVING INSTANCES

have to assign it one by one, but with a single rule as

{hao, ilya} � ∃Update.Code

Then with the set and complement we can easily revoke the permission from

some particular users out of the user group such as to allow all friends but

not Hao to upload musics with the rule as the following.

Friend � ¬{hao} � ∃Upload.Music

With the membership and fill constructor, RelBAC can express subject-

oriented rules as follows.

U � P : o (3.12)

(P : o)(u) (3.13)

(∃P.O)(u) (3.14)

(∀P.O)(u) (3.15)

(≥ nP.O)(u) (3.16)

(≤ nP.O)(u) (3.17)

where u is an individual user and o is an object instance; U is a user group

and O is an object class; P is a permission.

For example, to say that close friends can download a video named Shrek

II, we use Rule 3.12 as

CloseFriend � Download : shrek II;

to say that Hao can download Shrek II, we use Rule 3.13 as

(Download : shrek II)(hao);

to say that Hao can update some codes, we use Rule 3.14 as

∃Update.Code(hao);

46

CHAPTER 3. RELBAC MODEL

to say that Hao can upload only videos, we use Rule 3.15 as

∀Upload.V ideo(hao);

to say that Hao can update minimum 10 codes, we use Rule 3.16 as

≥ 10Update.Code(hao);

to say that Hao can download maximum 15 videos, we use Rule 3.17 as

follows.

≤ 15Download.V ideo(hao)

We can have corresponding object-oriented rules (3.18–3.23) respectively

as the following. We do not show examples of these rules as they are similar

to the subject-oriented rules above.

O � P−1 : u (3.18)

(P−1 : u)(o) (3.19)

(∃P−1.U)(o) (3.20)

(∀P−1.U)(o) (3.21)

(≥ nP−1.U)(o) (3.22)

(≤ nP−1.U)(o) (3.23)

3.5 The ‘All’ Rule

Up to now, we have introduced 8 kinds of rules (3.4-3.11) which assign re-

spectively to user the permission to access some, only, minimum/maximum

n objects with respect to Rule 3.4, 3.6, 3.8/3.10 (or restrict object to be

accessed by some, only, minimum/maximum n users with respect to as-

signment 3.5, 3.7, 3.9/3.11). But in a classic access control system, the

assignment from a set of users to a set of objects usually means that the

access has been granted to all the users onto all the objects. Therefore,

47

3.5. THE ‘ALL’ RULE

we need a form of permission assignment that the given group of users can

access all the objects in a given class.

Inspired by Alex Borgida1 we come to the following theorem for the rule

from all subjects onto all objects.

Theorem 1. Let C be a concept of object, and P a permission, then

∀C.P ≡ where (∀C.P)I = {a|∀b b ∈ CI → (a, b) ∈ P I}.

Proof.

(∀C.P)I

={a|∀b b ∈ CI
→ (a, b) ∈ P I

}

={a|∀b ¬b ∈ CI
∨ (a, b) ∈ P I

}

={a|∀b ¬b ∈ CI
∨ ¬¬(a, b) ∈ P I

}

={a|∀b ¬(a, b) ∈ P I
→ ¬b ∈ CI

}

=(∀¬P.¬C)I

Theorem 1 shows that to assign all the objects in a concept to user(s)

can be achieved with a rule in which the permission role negation and the

object concept negation are applied in value restriction. We can express in

Rule 3.24 that all users in U can access all the objects in O with permission

P ; and in Rule 3.25 that all the objects in O can be accessed by all the

users in U with P as follows. We name these new rules built with the short

form proved in Theorem 1 as ‘All’ rules.

U � ∀O.P (3.24)

O � ∀U.P−1 (3.25)

1
Alex Borgida http://www.cs.rutgers.edu/ borgida/

48

CHAPTER 3. RELBAC MODEL

Figure 3.5: Fine Grained Access Control of RelBAC

and we can have formulas with instances:

(∀O.P)(u) (3.26)

(∀U.P−1)(o) (3.27)

For example, project leaders can update all the code, is expressed with Rule

3.24 as

ProjectLeader � ∀Code.Update;

All the code can be updated by project leaders is expressed with Rule 3.25

as follows.

Code � ∀Update−1.P rojectLeader

The 4 rules (3.24–3.27) capture the common and only possible per-

mission assignments in existing access control system such as RBAC[29].

Obviously we can express more with the other 8 kinds of assignments.

3.6 Grained Cardinality

To be exact, we have fine-grained access control on cardinality as is shown

in Figure 3.5. Among the 16 combinations of the possible involved users

49

3.6. GRAINED CARDINALITY

Table 3.1: RelBAC Rules Correspondence

NO. Assignment RelBAC Rule(s)

1 u → o P (u, o)|P−1(o, u)|(3.13)|(3.19)

2 u → some O (3.14)

3 u → minimum|maximum|exactly n O (3.16)|(3.17)|(3.16,3.17)

4 u → all O (3.15)

5 some U → o (3.20)

6 some U → some O ∃P.O � U |∃P−1.U � O

7 some U → minimum|maximum|exactly n O ≥ nP.O � U | ≤ nP.O � U |

≥ nP.O � U,≤ nP.O � U

8 some U → all O (3.5)

9 minimum|maximum|exactly m U → o (3.22)|(3.23)|(3.22,3.23)

10 minimum|maximum|exactly m U → some O ≥ mP−1.U � O| ≤ mP−1.U � O|

≥ mP−1.U � O,≤ mP−1.U � O

11 minimum|maximum|exactly m U → all O (3.9)|(3.11)|(3.9,3.11)

12 all U → o (3.12)

13 all U → some O ∀P−1.U � O

14 all U → minimum|maximum|exactly n O (3.8)|(3.10)|(3.8,3.10)

15 all U → all O (3.6,3.7)

and objects for access control, RelBAC can deal with 15 of them except the

assignment which implies that ‘minimum/exactly/maximum m subjects in

U(m ≤ |U |) are allowed to access minimum/exactly/maximum n objects

in O(n ≤ |O|)’. Here we use ‘m’ instead of ‘n’ for users to avoid ambiguity.

Here in Table 3.1, u, o, U, O and P represent respectively an individual

user, an object instance, a user group, an object class and a permission.

We list the rule(s) to be referred to in order to achieve the 15 types of

permission assignments. Some are directly achieved by a RelBAC rule

such as Assignment (1,2,4,5,8,12); some require the combination of two

rules such as Assignment (15) and those related to ‘exactly’ cardinality;

and some are not directly represented by RelBAC rules we introduced in

50

CHAPTER 3. RELBAC MODEL

previous sections such as Assignment (6,7,10,13) but we can still use DL

inclusion axioms to achieve these assignments. So we extend the definition

of RULE a bit to allow the destination concept to appear on either side of

‘�’ and then all of the assignments in Table 3.1 can be represented with

RelBAC rules or rule combinations.

Actually, the ‘supersumption’ and ‘subsumption’ relations between sets

can be both represented with inclusion axioms by just exchanging the

position of the two sets in the axiom. ‘Equivalence’ can be also used to form

rules with equality axioms in addition to ‘subsumption’ rules introduced in

Section 3.3. However, it is more strict because it defines not only the ‘right’

but also the ‘duty’. For example, in the following rule

Coder ≡ ∃Update.Code

the users in the ‘Coder’ group have been assigned the permission to update

the objects in the ‘Code’ class. Moreover, at the same time, they are obliged

to update some object in that class. Otherwise, they cannot be a member

of ‘Coder’. So we seldom use ‘equivalence’ formed rules in practice unless

a formal definition is intended.

3.7 Summary

In this chapter, we introduced the RelBAC ER model and formalized

RelBAC with Description Logic. We focused here on the representations

of fine-grained access control with various of cardinalities and different

forms of access control rules in forms of inclusion and equality.

In the next chapter, we will show in details the reasoning ability of

RelBAC. Different access control tasks can be transformed to reasoning

tasks for an off-the-shelf DL reasoner.

51

Chapter 4

Reasoning in RelBAC

The advantage of using a logical framework for an access control model is

the automated reasoning ability of the logic. As discussed in Chapter 1,

current access control systems are supposed to face many new challenges

such as dynamic knowledge structure, various data types, evolving con-

texts, etc. These challenges bring us more and more complex management

tasks, so computer aided administration tools are almost compulsory for a

modern access control system.

We can identify two phases when we need reasoning. At design time, it

serves as a support tool for policy writers to determine possible conflicts

or to verify if the set of policies satisfy a desired static security property

(i.e. separation of duties). We discuss the reasoning with RelBAC logic

for these properties in Section 4.1. The reasoning abilities can be also used

at run time, which we will show in Section 4.2, how to use reasoning in

the implementation of access control decision which means to verify if an

access request is permitted or rejected by the applicable policies.

Before starting the main part of this section, we introduce some naming

traditions. In RelBAC, the knowledge base is divided into two parts. As

ABox in DL, the knowledge about individual users or objects is called

S which stands for states as it describes the state of the system. For

53

4.1. DESIGN TIME REASONING

example, the user membership to a group, access control policies about

individual users etc. are all typical knowledge of S. The other part deals

with knowledge without any individual such as hierarchies of groups and

classes and access rules about groups and classes. It includes TBox axioms

as in DL and called P for access control Policy. For example, the rules

(3.4-3.11) in Section 3.2 are typical knowledge in P . In this thesis, we will

follow the tradition that S is called the state base; P is called the policy

base and putting the two bases together, we get the knowledge base of the

RelBAC access control system.

4.1 Design Time Reasoning

To specify a desired access control system, security administrators have to

carefully design policies that meet the access control requirements. When

the number and/or the complexity of the policies is not trivial this process

is error-prone. It is very useful to offer a support tool that can automat-

ically detect possible conflicts among policies and/or verify that the set

of specified policies satisfy some required security properties. RelBAC

provides automated reasoning as such a tool at design time.

4.1.1 Hierarchy Management

A feature of RelBAC is its natural formalization of hierarchy as discussed

in Section 3.2. The ‘generalization’ relations in RelBAC ER model build

tree-like hierarchies among each of the three components: user groups,

object classes and permissions.

RelBAC reasoning can help to build the hierarchies at design time. Here

we introduce the subsumption reasoning task coherent to classic Description

Logic [4].

54

CHAPTER 4. REASONING IN RELBAC

Definition 2. Subsumption A concept C is subsumed by a concept D

with respect to P if CI ⊆ DI for every model I of P . A subsumption

checking is to check the following reasoning task.

P |= C � D?

There are many constraints in real life for the hierarchy in an access

control system. Gavrila et al. have discussed some user/role and role/role

relationship constraints with first order logic in [34]. It is much easier to

describe these constraints in RelBAC. Here we list the three constraints

about hierarchies in italic and discuss how RelBAC fulfills these hierarchy

management tasks.

‘A concept should not be declared directly or indirectly as subconcept of

itself.’

According to interpretation of RelBAC, we know that the antisymmetry

property of the partial order ‘�’ applies in the hierarchies in groups, classes

and permissions just as the subset-of relation between sets (a permission

is also a set with pairs as elements). To enforce this constraint, we can

refer to subsumption checking. Given two groups U1, U2, RelBAC checks

the knowledge base

P |= U1 � U2?

A ‘Yes’ answer restricts ‘U2 � U1’ to be added to P . For example, a sales

manager is also an employee can be formalized as ‘Manager � Employee’.

If the administrator would like to assert by mistake that an employee is a

sales manager, a pre-assertion checking of ‘P ,S |= Manager � Employee?’

is processed and a ‘Yes’ answer avoids this operation which will create a

‘loop’ in group hierarchy.

‘A user should not be declared belonging to a concept and its subconcept

at the same time.’

According to set theory, given two groups U1, U2 and U2 ≥ U1, for any

55

4.1. DESIGN TIME REASONING

user u, if U1(u) holds then we have U2(u) implied by the reasoner. Thus this

constraint can be rephrased as ‘a user should not be declared as member

of a group which it already belongs to.’ We will discuss about the user

membership management in Section 4.1.2 afterwards.

‘A set cannot be subset of two sets which are mutually exclusive.’

This constraint holds because any set declared like that would be rea-

soned as empty set according to the following theorem.

{U1 � U2 � ⊥, U � U1, U � U2} |= U � ⊥

For example, no users are allowed to be assigned as members of both the

sales manager and the sales agent can be formalized as ‘Manager�Agent �

⊥’. Then any attempt to assign one user to both groups will be checked

out as a conflicting operation. This could be used for separation of duties

as in Section 4.1.4.

Here we talked about user group hierarchy only. For object class hier-

archy and permission hierarchy, the theory applies similarly.

4.1.2 Membership Management

Users in an online community belong to various groups such as ‘Friend’,

‘Soccer Fans’, etc. RelBAC provides an access control mechanism based

on membership of groups such as users in the Friend group are allowed to

read my music folder. With the growing size and number of the groups,

the management of user membership becomes crucial. RelBAC can help

the administrator to control these memberships with reasoning. As object

classes and permissions are only sets with different individuals (objects as

individual of class, subject-object pair as individual of permission), the

membership management of classes and permissions is similar to that of

groups. Here in this section we discuss group membership management

only and the theory applies on class and permission memberships.

56

CHAPTER 4. REASONING IN RELBAC

Before talking about how RelBAC reason on membership management,

we define the entailment reasoning tasks of the RelBAC reasoner coherent

to classical Description Logic [4].

Definition 3. Entailment Given a RelBAC knowledge base consists of

P and S, the S entails a piece of knowledge α with respect to P if the

model for P and S is also a model for the knowledge. It is to check the

following reasoning task.

P ,S |= α?

Then from now on, entailment is regarded as a service provided by a

DL reasoner that we can use as the output of a blackbox. This service can

be also used in the following ways.

Consistency To check whether the knowledge base is consistent can be

achieved by an entailment reasoning with α = ⊥. That is to query to

the reasoner with

P ,S |= ⊥?

Redundancy If existing knowledge base already implies the assertion in-

tended to be added, the assertion is redundant. A redundancy check-

ing is an entailment as follows.

P ,S |= Ui(u)?

A ‘Yes’ answer from the reasoner means that this membership is not

necessary because the knowledge base can infer this already.

Conflict If the knowledge base is consistent, but not consistent any more

after adding the assertion, the assertion is conflicting with the knowl-

edge base. A conflict checking is a consistency checking of the consis-

tent knowledge base updated with the new assertion added.

P ,S � {Ui(u)} |= ⊥?

57

4.1. DESIGN TIME REASONING

A ‘No’ answer from the reasoner means that the updated knowledge

base is still consistent and the membership of u to Ui can be added.

With these reasoning services provided by RelBAC, we can reason

about the access control knowledge base for the membership management.

The daily management of user membership includes mainly two parts: ver-

ification and update. Verification is to validate the membership of a given

user to a given group. This can be achieved by the entailment service of

the DL reasoner. For example, to verify whether Hill is an employee is an

entailment reasoning as the following.

P ,S |= Employee(hill)?

The update of user membership means to add (delete) a user to (from) an

existing user group which is in turn only to add (delete) an assertion to

(from) the state base S. For example, to add a user hill as a member to

the Employee group, we can just add to S one assertion Employee(hill).

This update of S will bring u all the permissions assigned to Employee

just as the assignment of a role in RBAC.

However, before adding this state to S, an administrator should check

the redundancy and conflict. A simple algorithm of adding a subject to a

given group is provided as Algorithm 3.

For example, to add the membership that Hill is an employee can be

achieved with the following steps.

1. Redundancy checking with P ,S |= Employee(hill)?; if ‘Yes’, the as-

sertion is redundant and not to be added to the knowledge base.

2. Conflict checking with P ,S |= ¬Employee(hill)?; if ‘Yes’, the knowl-

edge base implies that Hill is not an employee and the assertion should

not be added.

3. Update the knowledge base by adding Employee(hill).

58

CHAPTER 4. REASONING IN RELBAC

Algorithm 3: Add Membership
Input: Subject u, Group G

if G(u) is NOT redundant for the knowledge base then1

if G(u) is NOT conflicting with the knowledge base then2

Add to the knowledge base with formula G(u);3

for each group Gi in the knowledge base do4

if G � Gi then5

Remove the formula Gi(u) from the knowledge base;6

end7

end8

else9

Error(”Conflicting with existing knowledge!”);10

end11

else12

Error(”Membership already assigned!”);13

end14

4. Delete any other redundant membership assignment for those groups

that hill may inherit the membership from Employee.

The feature of RelBAC, the natural formalization of hierarchy, brings

‘free’ membership inheritance through user hierarchies. By ‘free’ we mean

that no extra rule is necessary to specify the path of propagation after

the hierarchy is clearly designed and expressed. For example, if Hill is a

powerful agent and ‘PowerfulAgent ≥ Agent’, then Hill is a sales agent

comes for free with the following reasoning.

{PowerfulAgent(hill), PowerfulAgent � Agent} |= Agent(hill)

That is to say, membership inheritance depends only on the group hierar-

chy. Given any two groups Ui, Uj such that Ui ≥ Uj and u is a member

of Ui then the membership of u to Uj can be automatically implied by the

reasoner. Notice the transitivity of partial order is preserved by subsump-

59

4.1. DESIGN TIME REASONING

tion ‘�’ in DL. In this case, it is not necessary that Ui, Uj are directly

connected in the hierarchy.

When adding a user u as a member of a group Ui in a group hierarchy,

we can do the same as above Algorithm 3, because the user hierarchy does

not bring exceptions for the redundancy and conflict checking.

Here we have discussed the membership update of adding a user to

a group. The other operation of the update management, to delete a

user’s membership from a group is just to remove an existing formula

from the knowledge base if we have only isolated groups in the knowledge

base, otherwise membership inheritance through group hierarchies should

be considered.

To delete a user u from Ui, we have to consider those groups Uj that

inherits the membership of u from Ui. In order to get the most specific

group the user u belongs to, we introduce the realization task of RelBAC

coherent to classic Description Logic [4].

Definition 4. Realization Given an instance a and some concepts C1, ..., Cn,

find the most specific concept Ci in the given concept set such that P ,S |=

Ci(a). Here the concepts can be a set of groups (or classes) and the reasoner

will return the most specific group (or class) that a belongs.

As shown in Figure 4.1-a, the most complicated situation is that the

membership of u to Ui is inherited from Uj which satisfies Uj ≥ Ui when

some intermediate group U �
j
exists. Thus the deletion of u from Ui requires

the compensation of adding u as the member of all Uk, U �

k
....

For example, an access control system for sales force automation [82]

may have the group hierarchy as shown in Figure 4.1-b as a DAG. To

delete the membership of a user ‘Hill’ from the group ‘Employee’, the

algorithm finds the realization of hill is in the group of ‘Powerful Agent’.

By inheritance, hill has the membership to all the groups list in the figure.

60

CHAPTER 4. REASONING IN RELBAC

Figure 4.1: Delete User Membership in Hierarchy.

The membership delete operation should not affect the membership on

group ‘Stock Holder’.

In Algorithm 4, ‘Powerful Agent’ is put into the list of ‘Most Specific

Group’ in Line 3. The ‘for’ loop on Line 4 removes from the list of Most

Specific Groups those groups that are not more specific than ‘Employee’.

Then in the ‘for’ loop on Line 9, each group membership is removed by

compensating the more general group with the membership which is ‘Man-

ager’ and ‘Agent’. Because the membership to ‘Employee’ has not been

deleted with this round (the ‘while’ loop on Line 2 remains true), the

algorithm searches for new realization on Line 3 and finds ‘Manager’ and

‘Agent’. This round of compensation on Line 18 adds membership to ‘Stock

Holder’ and ‘Employee’. It also removes the membership from ‘Manager’

and ‘Agent’. Yet another round in the ‘while’ loop, the membership from

‘Employee’ is removed and the algorithm terminates. The intuition of Al-

gorithm 4 is to avoid the side-effect of the deletion operation such as to

deprive some membership that is not intended.

Similarly, an object membership can be inherited through object hier-

archies just as the subject membership inheritance. Therefore, the mem-

61

4.1. DESIGN TIME REASONING

Algorithm 4: Delete a User Membership in Group Hierarchy
Input: Subject s, Group G

Group[] MostSpecificGroup;1

while G(u) is entailed by the knowledge base do2

MostSpecificGroup = Realization(u);3

for each Group Gi in MostSpecificGroup do4

if Not Gi � G then5

remove Gi from MostSpecificGroup;6

end7

end8

for each Group Gi in MostSpecificGroup do9

Group[] GTemp;10

for each Group Gj in the knowledge base do11

if Gi � Gj then12

GTemp.add(Gj);13

end14

end15

Delete the formula Gi(u) from the knowledge base;16

for each Group Gk in GTemp do17

Add the membership of Gk to u; //Refer to Algorithm 318

end19

end20

end21

bership management tasks for object can be achieved the same.

4.1.3 Permission Assignment

To assign to a user u certain permission P on an object o, RelBAC adds an

assertion P (u, o) to the S in the knowledge base. Before this assignment

operation, redundancy and conflict checking should be performed as for

membership management in Section 4.1.2, to make sure that the permission

has not been assigned or conflicting with existing assignments.

62

CHAPTER 4. REASONING IN RELBAC

Sometimes the administrator tends to assign a group of users a permis-

sion on a class of objects. With rules (3.4-3.11) as shown in Section 3.2,

RelBAC provides easy ways to assign this with one rule rather than sev-

eral rules for each possible (u, o) pair. Further more, this enables RelBAC

some other way as listed below to assign to a user u the permission P on

an object o, where Ui is a user group and Oj is an object class.

1. Assign to u directly the permission P on the object o.

2. Suppose u is a member of a group Ui and the assignment of P on o

to all the members of Ui will assign P on o to u.

3. For an object class Oj that o belongs to, to assign to u the permission

P on all the objects of Oj will assign P on o to u.

4. If there is another permission P � more powerful than P , such that

P � ≥ P , the assignment to u the permission P � on o implies the

assignment of permission P on o to u.

For example, Hill is a sales manager which is also an employee, and there

is an offer named ‘Trento’. The permission to update the case is more

powerful than to read it. Then in order to specify that Hill is allowed to

read the offer named ‘Trento’ in RelBAC, the following forms of rules can

be added to the knowledge base.

1. Read(hill, trento)

2. Employee � Read : trento

3. (∀Offer .Read)(hill)

4. Update(hill, trento)

The first rule adds directly P (u, o) as to assert Hill is allowed to read the

offer ‘Trento’. The other three assignments will also allow this permission

63

4.1. DESIGN TIME REASONING

with the help of reasoning, because each of the last three (together with

the knowledge base) implies the first. To be exact, the second assignment

grants access to all users in group Ui; the third grants u access to all objects

in Oj; and the last assignment assigns to u some other permission P � which

is more powerful than P .

Assignment 2 and 3 are relatively good features of RelBAC because it

reduces the number of rules. By assigning to the largest group the per-

mission on the largest class, the m (or n) rules in form of Assignment

1 are expressed with one single rule (m, n are cardinality of sets Ui, Oj

respectively). Well, the fourth assignment should be considered twice be-

fore usage because it might lead to security leakage such as when some

P �� is not intended to be assigned but propagated from P � with some

background knowledge ‘P � � P ��’. For example, if the knowledge base

contains that Update � Read, Update � Execute and when we assign

Update(hill, trento), not only Read is assigned to hill, but the permission

Execute is implicitly assigned although not intended.

In any case, before assigning these rights, redundancy and conflict check-

ing are necessary as for membership management in Section 4.1.2.

In contrast to membership inheritance, the permission propagation is

more complex because a RelBAC permission is a binary relation that

links a subject to an object. Therefore, it has three paths to propagate:

user group hierarchy, object class hierarchy and permission hierarchy. For-

tunately, these propagations come for free just as the output of automated

reasoning and support tools are provided to help in the management work.

Rule 3.1 in Section 3.2 provides the way to build group hierarchy. For

permissions assigned with subject-oriented rules, they will propagate from

junior group to senior groups as

{Uj � Ui, Ui � α} |= Uj � α

64

CHAPTER 4. REASONING IN RELBAC

in which α stands for some permission together with the object to access.

For example, Manager ≥ Employee implies that all the permissions as-

signed to the employees will propagate to sales managers. To be precise,

if each Employee is allowed to read minimum 10 offers then the permis-

sion propagates to group sales manager such that each sales manager is

allowed to view minimum 10 offers as is implied by the reasoner without

any additional propagation rules.

{Employee �≥ 10Read.Offer , Manager � Employee}

|= Manager �≥ 10Read.Offer

In addition to the group hierarchy which simulates the role hierarchy in

RBAC model, RelBAC provides (object) class hierarchy and permission

hierarchy with partial order ‘≥’ applied on classes and on permissions with

respect to Rule 3.2 and Rule 3.3 in Section 3.2 .

Besides the subject hierarchy as paths for permission propagation, the

object hierarchy also provides such paths. For two assignments β, β� of the

same permission but on different object classes Oi, Oj, if Oi ≥ Oj the prop-

agation goes different ways according to the semantics of the assignment.

• If U � β, U � β� are assignments as Rule 3.4, 3.6 or 3.8 then

{Oi � Oj, U � β} |= U � β�

because β assigns the permission onto some (only, minimum n) ob-

jects in Oi then it assigns on some (only, minimum n) objects in a

superset of Oi, say Oj.

For example, the employees are allowed to read some (only, minimum

10) urgent offers implies that they are allowed to read some (only,

minimum 10) offers because urgent offers are a sub class of offers by

the assertion Urgent � Offer .

65

4.1. DESIGN TIME REASONING

• If U � β, U � β� are assignments as Rule 3.10 or 3.24 then

{Oi � Oj, U � β�} |= U � β

because β� assigns the permission onto all (maximum n) objects in

Oj, then it assigns the same permission on all (maximum n) objects

in a subset of Oj, say Oi.

For example, the employees are allowed to read all (maximum 5) offers

implies that they are allowed to read all (maximum 5, maybe less)

urgent offers because Urgent � Offer .

Moreover, permissions can propagate through permission hierarchy as

well. In contrast to sets of individuals such as groups or classes, the partial

order among permissions describes subsumption between sets of (u, o) pairs.

As shown in Rule 3.3 of Section 3.2 any individual pair (u, o) of Pi is also

pair for Pj.

For example, Update � Read implies that any assignment with permis-

sion Update is also assigned with Read such as the employees are allowed

to update some offers implies that they are allowed to read some offers.

The advantage of RelBAC is that these propagations come for free when

we define the hierarchies. No specific propagation rules are needed for the

knowledge base. This feature will simplify the system design and reduce

the possibility of errors.

4.1.4 Separation of Duties (SoD)

Advanced access control models tend to support separation of duties as an

important security property. In this section, we first talk about SoD in

general, then the dynamic SoD as a plus, last but not least, we discuss the

adaptability of RelBAC to support ‘high-level’ concerns [58] about SoD.

66

CHAPTER 4. REASONING IN RELBAC

General SoD

This constraint states if a sensitive task consists of two steps, then a differ-

ent user should perform each step. More generally, when a sensitive task is

composed of n steps, a SoD constraint requires the cooperation of at least

k (2 ≤ k ≤ n) different users to complete the task.

The RBAC model [29] supports SoD as we have shown in Section 2.2.2

especially in the case when k = 2. However, n new RBAC roles should be

used to represent the n steps of the SoD. This leads to the creation of new

roles every time defining a new step. In RelBAC, a permission is a relation

that links a subject with an object, and to enforce SoD the only thing to

do is to assert directly the axioms about permissions without additional

concepts such as RBAC roles to be created.

For example, to create and to delete an offer should be separated in the

SFA scenario [82]. It can be expressed in RelBAC as

∃Create.Offer � ∃Delete.Offer � ⊥

in which Create and Delete are two permissions. This policy restricts any

pair (u, o) belongs to both Create and Delete.

In general, a SoD enforces that given n steps of a task, at lest k(2 ≤

k ≤ n) users should be involved to fulfill the task. Suppose the worst case

that users are of relatively equal ability to perform these n steps. Then,

on average each user may take m steps of the task, where m satisfies the

following equation.

n

k
≤ m <

n

k − 1

Therefore, maximumly m = �n/(k − 1)� − 1. To enforce the SoD, no user

is able to fulfill any arbitrary m + 1 steps of the task. Then RelBAC can

67

4.1. DESIGN TIME REASONING

formalize this as follows.

C
�n/(k−1)�
n �

i=1

(��n/(k−1)�

j=1
Uij) � ⊥ (4.1)

in which Uij stands for the (user) group that has any of the m rights. For

example, suppose that to create, update, review and archive an offer are

the 4 steps of processing an offer in the SFA scenario. A SoD requires that

minimum 4 faculty members should be involved in this process. This SoD

can be enforced as follows in RelBAC.

(∃Create.Offer � ∃Update.Offer) � (∃Create.Offer � ∃Archive.Offer)�

(∃Create.Offer � ∃Review.Offer) � (∃Update.Offer � ∃Review.Offer)�

(∃Update.Offer � ∃Archive.Offer) � (∃Review.Offer � ∃Archive.Offer) � ⊥

as C�n/(k−1)�

n = C�4/3�

4
= C2

4
= 6. It intuitively enforces that any two steps

cannot involve the same user.

Generally speaking, when k = 2, Rule 4.1 enforces a sufficient and

necessary condition of the SoD. However, for cases k ≥ 3, Rule 4.1 is still

sufficient but not always necessary. In the example above, the rule we

enforce for k = 3 is exactly the one we use for k = 4. It is understandable,

that ‘minimum 4 users’ covers the case of ‘minimum 3 users’.

In [59] N.Li et al. modeled the problem of k − n static separation of

duties with a first order logic formula as follows.

∀u1...uk−1 ∈ U((
k−1�

i=1

auth permsγ[ui]) �⊇ {p1...pn}) (4.2)

The formula 4.2 uses universal quantifier on arbitrary k−1 users in space of

U . It collects all the permissions explicitly/implicitly assigned to this k−1

users and enforces that they are not superset of all the n steps (duties).

Their solution has the complexity of (|U |k−1 ∗ n) which explodes to the

68

CHAPTER 4. REASONING IN RELBAC

cardinality of the subject space. Our solution enforces a sufficient but not

always necessary condition of the SoD. However the complexity is only

(nn/k). Considering that the number of steps which is n, is usually far less

than the number of users |U | in the system, our method is more efficient

than [59] in most cases.

Dynamic SoD

SoD is categorized into static and dynamic in RBAC[29] according to the

time when the policy is enforced . An SoD enforced at design time is

regarded as static, and as dynamic if it is enforced at run time. Static

SoD can be represented in RelBAC as the general SoD discussed at the

beginning of this section. Dynamic SoD should be enforced at run time,

which intuitively means that the duties to be separated can be assigned but

cannot be activated simultaneously at run time. RBAC fulfills it with the

concept of session as representatives of the user at run time by restricting

sessions from activation of separated roles. In RelBAC, dynamic SoD is

achieved by run time permissions.

Definition 5. Run time Permission (RTP) A run time permission is a

permission describing the execution of a common sense permission which

has a name in the form of a verb (phrase). For each common sense per-

mission, a corresponding RTP exists in the form of the present continuous

tense of the verb.

For example, the RTP of permission ‘Read’ is ‘Reading’ and the RTP

for permission ‘ConnectOnWeekends’ is ‘ConnectingOnWeekends’. A user

cannot activate a RTP unless she has the original permission which is

enforced with the policy as P-ing � P when the RTP is introduced to P .

For example, Reading ≥ Read is used to restrict that a user cannot execute

permission ‘Reading’ without the permission ‘Read’. Thus the dynamic

69

4.1. DESIGN TIME REASONING

SoD ‘a user cannot create and delete an offer at the same time’ is enforced

as follows.

∃Creating.Offer � ∃Deleting.Offer � ⊥

In the real world, a user can be grant the permission to create and to

delete, but cannot be performed simultaneously.

To enforce dynamic SoD, the access control system should be informed

of the state changing in time such that the real time state e.g., Alice is

creating an offer ‘Bolzano’. Then the knowledge base should be updated

with the new assertion Creating(alice, bolzano). Then the dynamic SoD

will take effect that Alice is not allowed to create and delete an offer at the

same time which is an entailment of the reasoner that

P ,S � {Creating(alice, bolzano)} |= ¬∃Deleting.Offer(alice)

although Alice might has both the permission to create and to delete some

offer(s).

High Level Constraint of SoD

For the general SoD property, the composition of the k users to complete

the task is sometimes important. The administrator may like to constraint

first that these users are from certain groups, cardinality related constraints

are also necessary for the composition. N.Li et al. studied SoD in detailed

requirements for user attributes in addition to user number. An algebra

is proposed in [58] to specify complex policies combining requirements on

user attributes and number. On top of the number restriction for given

duties, their algebra can specify the composition of the users for the SoD

which they regard as high-level policy. For example, beyond the constraint

that to process an offer should involve minimum 4 users, it can restrict that

the set of users that can manage offers consists the following compositions.

1. Exactly 4 employees, i.e., 1 sales manager and 3 sales agents.

70

CHAPTER 4. REASONING IN RELBAC

2. Minimum 4 employees including 1 sales manager and 3 sales agents

and maybe more users as sales manager or agent.

3. Minimum 4 employees including 1 sales manager and 3 sales agents

and maybe more employees.

RelBAC can achieve this kind of constraints with object-centric rules with

equivalence axiom and value restriction constructor. For example, as for

the cases above, the three constraints for the set of users can be formalized

as follows.

Offer �(= 4Process−1.Employee)�

(= 1Process−1.Manager) � (= 3Process−1.Agent)

Offer �(∀Process−1(Manager � Agent))�

(≥ 1Process−1.Manager) � (≥ 3Process−1.Agent)

Offer �(≥ 1Process−1.Manager) � (≥ 3Process−1.Agent)

Here the permission Process can be regarded as the union of the 4 steps

as Process ≡ Create � Update � Review � Archive. We abbreviate the

usage of both ≥ n and ≤ n as = n in value restriction. In addition to this

kind of high-level policy in addition to the general SoD policy as discussed

in Section 4.1.4.

4.2 Run time Reasoning

For a RelBAC based access control system, after the knowledge base is

built with consistent policies and states (respect to S and P), access con-

trol decisions can be made by reasoning about the access query and the

knowledge base on an off-the-shelf reasoner.

Basically, to decide whether a user u has some permission P on some

object o, Algorithm 1 is used. RelBAC submits a query for knowledge

71

4.2. RUN TIME REASONING

P (u, o) to the knowledge base predefined with P and S. The decision is

‘Yes’ if P (u, o) is in the knowledge base or implied by the knowledge base;

otherwise, the decision is ‘No’.

In addition to this basic decision on a query as P (u, o), RelBAC is able

to make decisions to more complex access requests. Given a group of users

U which u belongs to, some permission P and a class of objects O which

o belongs to, RelBAC provides access control decisions to the following

queries.

1. Is the user u allowed to access the object o with the permission P?

For example, is an employee Hill allowed to read an offer ‘Trento’?

can be a query as

P ,S |= Read(hill, trento)?

2. Is the user u allowed to access some objects in O with P? For example,

is Hill allowed to read some offers? can be a query as

P ,S |= (∃Read.Offer)(hill)?

3. Is the user u allowed to access maximum/minimum or equal to n of the

objects in O with P? For example, is Hill allowed to read maximum

5 of the offers? can be a query as follows.

P ,S |= (≤ 5Read.Offer)(hill)?

Here value restriction ≤ n is used to express maximum n, n=5. Other

number restriction such as minimum is straight forward. The exact

restriction = n can be expressed with combination of maximum and

minimum. Strictly more than n and less than n can be achieved with

minimum n + 1 and maximum n − 1, because in RelBAC, number

restrictions are about natural number only.

72

CHAPTER 4. REASONING IN RELBAC

4. Is the user u allowed to access all the objects in O with P? For

example, is Hill allowed to read all the offers? can be a query as

follows.

P ,S |= (∀Offer .Read)(hill)

5. Is there any user(s) in U allowed to access all objects in O with per-

mission P? For example, is there any employees allowed to read all

the offers? can be a query as

P ,S |= Offer � ∃Read−1.Employee?

because the virtual group implied by ∃Read−1.Employee is the set of

all the objects that can be read by some employee.

6. Are there maximum/minimum or equal to n users in U allowed to ac-

cess all the objects in O? For example, is there minimum 3 employees

allowed to read all the offers? is a query as

P ,S |= Offer �≥ 3Read−1.Employee?

7. Is each user of U allowed to access maximum/minimum or equal to

n objects in O? For example, is each employee allowed to read more

than 10 offers? can be a query as follows.

P ,S |= Employee �≥ 11Read.Offer?

8. Is each user of U allowed to access all objects in O with P? For

example, is each of the employee allowed to read all the offers? can

be a query as

P ,S |= Employee � ∀Offer .Read?

because the virtual class implied by ∀Offer .Read is a set of all the

users that can read all the internal grades.

73

4.3. SUMMARY

We can see from the above that quite flexible queries can be answered

by the reasoner such that complex access control can be decided e.g., car-

dinality related queries. The expressiveness of RelBAC model allows to

have 15 types of rules for fine-grained access control as discussed in Section

3.7.

4.3 Summary

RelBAC allows to express many complex properties, and especially pow-

erful in cardinality related policies. In this chapter, we discussed the auto-

mated reasoning issues about RelBAC. Management tasks on hierarchy,

membership, and permission assignment can be translated into design time

reasoning for RelBAC. Important security properties such as Separation

of Duties (SoD) are also discussed here with an even further step on the

high-level SoD which concerns the composition of the users sharing the

duties. Access control decision can be made on various access requests

according to the run time reasoning of RelBAC.

In the next chapter, we will show the extensibility of RelBAC by dis-

cussing how to capture the features of RBAC model and its extensions,

e.g., PBAC model.

74

Chapter 5

Other Models in RelBAC

RelBAC is a flexible access control model with great extensibility. It

focuses on the basic access control components only, so additional compo-

nents can be easily extended without conflicts; it models the permission

as a binary relation connecting the subject and the object, so that the

complex policies can be naturally addressed; it is built on an Entity Rela-

tionship model so that it can be integrated into a large system design to

cooperate with other parts; and it is formalized with a Description Logic

based logical framework so that any unary and binary relations can be

easily captured and extended.

We are going to show in this chapter how other access control models

are represented in RelBAC. Section 5.1 discusses the early access control

models such as AM and ACL; the extension to RBAC model is addressed

in Section 5.2; in Section 5.3 we represent PBAC model in RelBAC and

summarize the extensibility of RelBAC in Section 5.4.

5.1 Early Models in RelBAC

As discussed in Chapter 2, early access control models evolve from the

original basic access control to AM[10], and then to ACL[76]. Here in this

section, we show how RelBAC represents these early models.

75

5.1. EARLY MODELS IN RELBAC

As shown in Chapter 3, RelBAC has the same entity sets as the basic

access control model in Figure 2.4, which are Subject, Object and Operation.

The difference is that the Permission in RelBAC plays two roles. One role

as the operation is by naming a permission with exactly the name of the

Operation; the other role as the Policy relation among the other three is

by connecting the Subject and the Object as a binary relation.

Access Control Matrix (AM) and Access Control List (ACL) models

express the same intention in different representation of the basic access

control model. An AM shows the 3-ary relation with a 2-dimensional

matrix in which the contents of the cells represents the Operation. An

ACL is attached to an Object as a list composed of (Subject, Operation)

pairs. Thus, when a request comes for the object, the system checks if the

subject and the intended operation are in the list.

RelBAC can be regarded as to represent the cell of an AM model with

a named pair

Permission(Subject, Object)

and avoids the drawback of a large matrix with large portion of empty

cells. A named pair can express the same as an entry in an ACL does, and

even more (in the sense that a named pair has the third parameter rather

than the only two in an entry). RelBAC provides more flexibility than

ACL. For example, an ACL is attached to an object and it is hard to check

from a subject point of view such as to query for all the documents that a

given user can read. RelBAC does not have such limits because it offers

both subject-oriented and object-oriented rules in addition to the ground

rules, exactly in the form of a named pair that can be queried from any

perspective, e.g., given a subject and query, then query for the permissions

and objects, etc.

Therefore, RelBAC model captures all the features of the early access

control models.

76

CHAPTER 5. OTHER MODELS IN RELBAC

5.2 RBAC in RelBAC

As a prevailing access control model, RBAC has many advantages in ex-

pressiveness and efficiency. In this section we first present the interpreta-

tion of the RBAC model as basic access control policies. Then, we show

how RBAC can be covered by RelBAC.

5.2.1 Interpretation of RBAC

As shown in Figure 2.3, the core of RBAC [29] is the role, which originates

from social positions such as manager in an enterprise solution. Prede-

fined roles simplify the assignment procedure into user-role membership

management. Thus, subject and object are no longer directly related as in

the basic access control model.

From the Figure 2.3 we can see that RBAC consists of additional com-

ponents to the basic access control model in Figure 2.4 are in three aspects:

1. ROLES (hierarchy) intermediate USERS and PRMS (permissions1);

2. Combination of OPS (operations) and OBS (objects) into PRMS;

3. SESSIONS for run time constraints.

The first two differences split the permission assignment procedure into

three steps: first, combine an operation p and an object o as a permission;

then, assign the permission to a role r; last, assign a user u to the role r.

It is exactly to make p, o a pair, and then connect the pair (p, o) to a role r

which forms a tuple (r, p, o), and then form another pair (u, r) and by the

role r shared in both tuples, u get the access to o with p. The advantage

is that (p, o) pairs can be predefined and connected to r at design time.

At run time, when a new user u comes, assignments of all (p, o) pairs are

1
A pair as (operation, object), to be differentiated from a RelBAC permission.

77

5.2. RBAC IN RELBAC

simplified into one assignment of the user u to a role r which has been

assigned those intended p, o pairs already. The efficiency is achieved as

linear time to the number of users that need the assignments. A drawback

of RBAC is that the pre-combination of p, o binds o to p such that no

policy can be specified from the object point of view, e.g., to enforce that

‘internal information can be accessed only by those people whose security

level is above manager’.

SoD is an important constraint RBAC can enforce. In [29] D.Ferraiolo,

R.Sandhu et al. distinguished static SoD with dynamic SoD according

to the time this constraint is enforced. Static separation of duties (SSD)

enforces constraints on the assignment of users to roles. Membership in

one role may prevent the user from membership of one or more other

roles. With the role hierarchy, inherited roles should also be considered for

this constraint. Dynamic separation of duties (DSD) differs from SSD by

placing constraints on the roles that can be activated within or across a

user’s sessions.

5.2.2 RBAC in RelBAC

The RBAC model has the following unary components which we can be

represented in RelBAC as concepts: ROLES, OPERATIONS, OBJECTS.

Binary components which can be represented as RelBAC roles2: PERMIS-

SIONS. Details of the correspondence from RBAC to RelBAC are shown

in Table 5.1.

We see that RBAC roles can be represented with the user groups in

RelBAC and the user assignment (UA) in RBAC is just the user member-

ship in RelBAC. RBAC permissions are (operation, object) pairs which

do not exist in RelBAC because objects in a RelBAC model are decoupled

from operation. However, a RBAC permission can be captured with the
2

To be differentiated with a RBAC role, here a RelBAC role is a binary predicate in DL.

78

CHAPTER 5. OTHER MODELS IN RELBAC

Table 5.1: RBAC in RelBAC

RBAC Component RelBAC Component

USERS SUBJECT instances

ROLES SUBJECT sets

OPERATIONS PERMISSION names

OBJECTS OBJECT instances

SESSIONS encoded in Run time PERMISSION

UA SUBJECT membership

PA RelBAC rules

RH Subsumption axioms with ‘�’

following formulas.

Op : ob (5.1)

∀Ob.Op (5.2)

in which Op is a RelBAC permission with the name as the RBAC oper-

ation; ob is the object instance when the RBAC permission relates to an

object; Ob is the object set when the RBAC permission relates to a set

of objects. The intuition of Formula 5.1 and 5.2 is to represent a virtual

group of users that all the group members can perform the operation Op

on the object ob or on all the objects in Ob. The permission assignment

(PA) can be achieved as the RelBAC Rule 3.12 and 3.24.

Role � Op : ob (5.3)

Role � ∀Ob.Op (5.4)

Role hierarchy in RBAC can be achieved with the partial order in RelBAC

with Rule 3.3.

Role1 � Role2 (5.5)

Figure 5.1 illustrates the relation of RBAC with RelBAC by simulating

79

5.2. RBAC IN RELBAC

Figure 5.1: RBAC in RelBAC

the structure of RelBAC with RBAC terminologies.

RelBAC model can capture the three steps of assignment in RBAC as:

1. Define empty groups G�
1
, ... as roles in RBAC;

2. Connect these empty groups with object o with operation p;

3. Connect real user groups G1, ... (or user u) to G�
1
, ...

For constraints such as SoD, we can take use of the predefined empty

group ‘G�
i
...’ and separate the duties by means of mutually exclusions. For

example, a SoD takes form (rs, n) where rs = {G�
1
, G�

2
, G�

3
} and n = 2 then

it can be formalized as axiom:

G�

1
�G�

2
�G�

1
�G�

3
�G�

2
�G�

3
� ⊥

One of the main features of RBAC is ‘permission inheritance’ (i.e. a

child role inherits all the permissions assigned to its parent role). RelBAC

uses the partial order ‘generalization’ for group hierarchy to simulate role

hierarchy in RBAC and extends the hierarchy into objects and permissions.

In addition, we have many other kinds of permission assignments , which

can easily assign operation Pj onto some/only objects in type Tk. The

assignment onto all objects in Tk, which is the typical permission in RBAC,

can be expressed with Theorem 1 with help of constructor value restriction,

complement of concept and role.

The advantages of RBAC model are in three aspects:

1. Assignment of permissions is linear to user number;

80

CHAPTER 5. OTHER MODELS IN RELBAC

2. Inheritance of permissions through role hierarchy;

3. Constraint as SoD can be enforced.

All of these features are preserved by RelBAC.

5.3 PBAC in RelBAC

Purpose Based Access Control (PBAC) [15] was proposed by J.Byun,

E.Bertino and N.Li as an extension of RBAC with definition of ‘purpose’

in 2005. It addresses the necessity to control the access on the purpose of

usage on the object with conditional roles. We will show PBAC in an ER

diagram in this section, then interpret PBAC and at the end of this section

we show how RelBAC captures PBAC.

5.3.1 PBAC model

As an extension to classic RBAC, the PBAC model consists of the following

components:

PURPOSES access reasons, P as a set of purposes.

PURPOSE TREE a set of purposes organized as a tree structure de-

noted by PT , Ancestors of P in tree PT is the set of all nodes that

are ancestors of nodes in P , Descendants of P is the set of all descen-

dants of nodes in P and nodes in P ;

ATTRIBUTES there are attributes for role and system description, and

each attribute ai has a data type τi.

CONDITIONAL ROLES Tuples as (r, C), where r is a role and C is

a set of propositional logic formula constructed from primitive con-

straints with logical operator ‘∨(OR),∧(AND),¬(NOT)’ in which

primitive constraints are composed of attributes and/or purposes;

81

5.3. PBAC IN RELBAC

AUTHORIZATION Three-step procedure as in RBAC with minor fixes:

1. assign permissions to conditional roles;

2. assign access purpose to conditional roles;

3. assign user to conditional roles;

VERIFICATION Given an access request as a tuple (u, ap, p, o) respec-

tively for user, access purpose, operation and object, the request is

accepted only if all of the following are satisfied:

1. there exists a conditional role cr = (r, C) where C is satisfied and

permission (p, o) is assigned to r or inherited to r;

2. ap is assigned to cr or inherited to cr;

3. u is assigned to cr or inherited to cr;

Intended Purpose (IP) tuples are defined with the purpose tree as (AIP, PIP)

where AIP ⊆ P and PIP ⊆ P are the sets of allowed and prohibited in-

tended purposes respectively. The set of purposes implied by IP , denoted

by IP ∗ is defined as

(Ancestors(AIP)− Ancestors(PIP) ∪Descendants(PIP))

Given the intended purpose IP over purpose tree PT , an access purpose

ap is compliant to IP if and only if ap ∈ IP ∗.

5.3.2 Interpretation of PBAC

The aim of PBAC is to solve the problem that the predefined roles do not

adequately specify the set of users we wish to grant the access. J.Byun

et al. use conditional roles to specify different attributes of the role and

the system such that when a user activates the role, she must fill in the

corresponding attributes with the values about the user. This allows the

82

CHAPTER 5. OTHER MODELS IN RELBAC

administrator to design different settings of the same role for different users.

In contrast to the RBAC model, the additional information of purpose acts

as a new parameter of both the role and the user. The original relation

which is a triple (u, p, o) becomes a four-tuple as (u, ap, p, o) where u, p, o

stand for the original user, operation, object respectively and ap stands for

access purpose.

Moreover, PBAC differentiates from RBAC with the attributes and

predicates over these attributes. In [15], attributes are divided into role

attributes and system attributes. Role attributes specify characters of the

users assigned to the role and make users distinguishable even within a role.

Regarded as a parameter for the permission assignment, system attributes

describe the state of a system and influence the definition of conditional

roles. According to the state of the system (different values of the system

attribute), many conditional roles (r, ci) can be formed based on a single

role r. In this perspective, PBAC just increases the number of roles in a

flexible way that different conditions can be used. As the domains of an at-

tribute may vary from ‘time’ to ‘number’ or even ‘currency’... there would

not be a common framework that can cover all these domains. Therefore,

attributes should be defined according to system requirements respectively.

But once the domain is fixed, corresponding predicates can be defined def-

initely.

PBAC is an example of many RBAC extensions that enrich the RBAC

model with more parameters.

5.3.3 PBAC in RelBAC

From the interpretation, we see that PBAC offers more parameters for

more precise permission assignments than RBAC.

With the ER diagram of Figure 5.2, we can see how PBAC is captured

by RelBAC.

83

5.3. PBAC IN RELBAC

Figure 5.2: PBAC in RelBAC

An entity set named PURPOSES is added as the set of purposes to

capture the component of purpose in PBAC. A ‘child-of’ relation can be

used to form PURPOSE TREEs. A purpose is assigned to ROLES with

‘access purpose authorization (APA)’.

Another entity set ATTRIBUTES is used to for the set of attributes.

We use the relation ‘Attribute Assignment (AA)’ for ‘role-attribute’ assign-

ments in PBAC. The PREDS relation stands for the predicates defined on

attributes.

All these additional components can be easily supported in RelBAC

with small extensions and formalized in DL framework, as shown in Table

5.2.

PURPOSES can be formalized with a concept as AP , a purpose such

as ‘direct’ or ‘market’ is an instance of the concept; ATTRIBUTES can

be formalized with concepts as AT1, ..., ATm; PREDS as the predicates

between attributes can be formalized with roles as PRED1, ..., PREDn;

access purpose can be assigned with an access control policy statement

with a role HasAP as

Gl � ∃HasAP.AP ;

84

CHAPTER 5. OTHER MODELS IN RELBAC

Table 5.2: PBAC in RelBAC

PBAC Component RelBAC Component

PURPOSES AP : concept for all purposes;

ATTRIBUTES AT1, ..., ATm: concepts for each attribute;

PREDS PRED1, ..., PREDn: roles for predicates between attributes,

ATi � ∃PREDj.ATk attribute relation;

AA HasAt: role for attribute assignment,

Gl � ∃HasAt.ATi group attribute assignment;

APA HasAP : role for access purpose assignment,

Gl � ∃HasAP.AP access purpose assignment;

group attribute can be assigned with a policy with role HasAT

Gl � ∃HasAt.ATi;

attribute relation can be formalized with a policy as

ATi � ∃PREDj.ATk;

Here in the formalism, i, j, k, l, m, n are all natural numbers in which m, n

are the number of predicates and attributes respectively.

We can see from the RelBAC extension that all extra parts of PBAC

model are covered. With the flexible expressiveness based on ER model

and DL, RelBAC is powerful in extensibility.

5.4 Summary

In this chapter, we have shown the extensibility of RelBAC. At the begin-

ning of the chapter, we have represented the early access control models

in RelBAC. Then, with the popular RBAC model as an example, we

have also shown that RelBAC can represent state of the art access control

models without any difficulty. RelBAC offers even more expressiveness

e.g., with object-oriented rules, RelBAC can enforce constraints from the

85

5.4. SUMMARY

object side; with the value restriction axioms, RelBAC can enforce the

so-called high-level SoD. Further more, we take the PBAC model as a

representative of RBAC extensions with more parameters such as purpose

and attributes. RelBAC is easily extended to capture PBAC features. To

support the predicates over attributes, we model each attribute as a con-

cept with attribute value as the instance and model the predicates upon

attributes as roles. As an advantage, DL framework brings RelBAC great

expressiveness to model any unary and binary predicates.

86

Chapter 6

Lightweight Ontologies for Access

Control

RelBAC is an access control model born for the web and it has close

relation to the OWL [69], the web language for ontology. The logical

framework of RelBAC is Description Logic, and the knowledge base can

be expressed with OWL-DL language [71] into an ontology. The ontology,

in turn can be put to a reasoner though the OWL-API [70]. We will show

in this chapter the way to apply the theory and algorithms of Lightweight

Ontologies [42] on RelBAC.

The chapter is organized as follows: Section 6.1 gives the permission

propagation problem as a motivation; Section 6.2 briefly introduces the

theory and algorithms Lightweight Ontologies; Section 6.3 shows how to

apply the theory on RelBAC; and we conclude in Section 6.4.

6.1 Propagation Problem

Access right propagation is one of the most important features of RelBAC.

The natural formalization of the partial orders inside the subjects, the

objects and the permissions are free paths for the propagation. However,

there are far more other relations rather than ‘generalization’.

87

6.1. PROPAGATION PROBLEM

Figure 6.1: Alice’s Social Network Figure 6.2: Alice’s Social Ontology

We use an example of social network to illustrate the heterogeneity of

relations among users. Suppose that Alice, an eBusiness vendor, has an

online shop on eBay selling digital devices. Figure 6.1 shows part of her

social network. For instance Bob, David and Ivan have business relations

with her, while Chris and George are just common friends. Although the

6-degree separation [5] theory applies on the social networks nowadays,

no constraints are placed on the type of relations between the 6 people.

Foaf [67] and Web Of Trust [68] are typical social network relations, but

there are thousands of other relations, e.g., comment on someone’s blog,

share the same research topic with, etc. Back to our example, with the

continuous growth of her business, Alice decides to manage these contacts

in her own way, so that she can easily find the ‘proper’ profiles whenever

necessary. David is a ‘business friend’ who works at the sales department

of Apple, and he will inform Alice about products and special offers such

that Alice can immediately put them on her website. Jane is her ‘best

customer’: she visits Alice’s online shop frequently and comments on the

deals she has just completed. This will help new potential customers in

getting an impression of the service and quality of the goods. Of course,

Alice is happy to give Jane VIP prices as rewards. Finally, Alice has a

88

CHAPTER 6. LIGHTWEIGHT ONTOLOGIES FOR ACCESS CONTROL

tree-like structure such as in Figure 6.2.

Notice that although people tend to organize his/her social network in

a tree-like hierarchy, the relations between the nodes of this tree are not

unified. Moreover, the social network is made of human beings that can

easily move in or out of the network. Therefore, we come to the problem:

how can we propagate the access right in this messy evolving network?

6.2 Lightweight Ontologies

A lightweight ontology originates in [35] for classification of objects, and

now it is formally defined in [42] as a term for ontology in the field of

semantic web.

Definition 6. A lightweight ontology is a triple of �N, E, C� where N and

E are sets for nodes and edges that form a rooted tree, and C is a finite set

of concepts expressed in a formal language F as the one and only one label

for each node and if node ni is the parent of node nj the concepts satisfy

that cj � ci.

A propositional Description Logic language, i.e., a DL language without

roles, is used as the formal language F. To build a lightweight ontology out

of a natural language terms labeled tree, we follow the following steps.

1. The label of each node is transformed into a propositional DL formula

using natural language processing (NLP) techniques. For example,

the label ‘Soccer Fan’ is transformed into ‘Socceri � Fanj’ where the

superscript i(j) stands for the ith (jth) meaning of the word in a

reference dictionary (e.g., WordNet).

2. Each node is associated a formula, called the concept at node, which

is the conjunction of the formulas of all the nodes on the path from

89

6.3. LIGHTWEIGHT ONTOLOGIES IN RELBAC

the root to the node itself. For example, the node labeled ‘Soccer

Fan’ in Figure 6.2 will be labeled with ‘Friendk � Socceri � Fanj’.

The concept at node univocally defines the ‘meaning of that node’,

namely, the set of documents which can be classified under it.

These two steps disambiguate the meanings of each natural language

item and calculate the concepts for each node in order to meet the request

that if node ni is the parent of nj then the concepts of ni and nj satisfy

cj � ci. Lightweight ontologies are not only a way to organize objects,

but can be used on people such as to classify the acquaintances of Alice in

Figure 6.1 into a lightweight ontology shown as Figure 6.2.

6.3 Lightweight Ontologies in RelBAC

As we discussed in Section 6.1, each person will belong to one or more

different social communities where many people and different social rela-

tions will co-exist. With the communication simplified by the development

of Internet, social activities such as online forums and blogs have greatly

enriched the type of relations in a social network: not only traditional

relations like ‘knows’, ‘is-a-friend-of’ etc. but new terms such as ‘shares-

photo-with’ or ‘comments-on-blog’. It is almost impossible to propagate

permissions among these relations.

Moreover, people cannot find what they need in a messy web like Figure

6.1, but are familiar with tree-like structures such as the file systems of

their computers, their email directory, classifications, catalogs, and so on.

In general, there is a widespread tendency towards organizing resources

(even the social community is a kind of resource) in tree-like structures.

The key feature underlying the success of directories is that one can easily

find something according to the property that, the deeper a category in

a tree, the more specific resources it will contain. F.Giunchiglia et al.

90

CHAPTER 6. LIGHTWEIGHT ONTOLOGIES FOR ACCESS CONTROL

Figure 6.3: Alice’s Web Directories Figure 6.4: ‘Update’ Ontology

describe the details in [43] about the algorithms and implementations.

As a consequence, access control within user communities can be imple-

mented in RelBAC as follows:

1. We implement subject hierarchies, as defined Section 3.2, and like the

one in Figure 6.2, as lightweight ontologies of subjects (users, agents,

customers, friends, ...);

2. We implement object hierarchies, as defined Section 3.2, and like the

one in Figure 6.3, as lightweight ontologies of objects (resources, files,

photos, web services, ...);

3. We implement permissions as relations and formalize them as DL roles

between subject and object hierarchies. In turn, permissions as well

can be organized as lightweight ontologies, like the one in Figure 6.4.

Notice that hierarchies like the ones in Figures 6.2, 6.3 and 6.4 allow

to implement the partial order defined in Section 3.2. But not quite: to

achieve this, we need to have DL formulas (and not natural language sen-

tences) in nodes. Given that end-users most often do not understand and

do not know how to manage logical formulas, our solution is to leave natural

91

6.3. LIGHTWEIGHT ONTOLOGIES IN RELBAC

Figure 6.5: RelBAC Permission Assignment on Lightweight Ontologies

language sentences on the user interface and to translate them, with no or

very little user intervention, into DL formulas, thus obtaining lightweight

ontologies with the same structure as the input hierarchy. We achieve this

by exploiting the ideas described in [36, 37]. This translation happens

according to the steps introduced in Section 6.2.

The user will keep seeing and managing hierarchies but all her oper-

ations will be supported and (partially) automated via reasoning on the

underlying lightweight ontology. The IS-A hierarchy of this ontology makes

precise and explicit all the user defined implicit and ambiguous relations

between object categories. This substantially facilitates the access control

problem. More concretely, some advantages are:

• Objects can be automatically classified into the proper directories with

the help of a DL reasoner. With the algorithms described in [36, 37],

it becomes possible to easily add the vast amount of new information

to the proper categories with the proper access rules;

• The evolution of the object ontology (e.g., addition or deletion of a

new category) is much more under control because it must satisfy the

92

CHAPTER 6. LIGHTWEIGHT ONTOLOGIES FOR ACCESS CONTROL

Figure 6.6: Scattered Permissions to a lightweight ontology

underlying ontological semantics;

• As from Section 3.2, the permissions on an object category will prop-

agate up the tree.

We show in [88] the details on how reasoning can be exploited to achieve

the above advantages, and more. Considerations similar to those provided

for object ontologies apply also to subject ontologies. As mentioned above,

these ontologies can be used to organize access to the underlying (possibly

very messy) social network. There are however two further important

considerations. The first is that RelBAC subject lightweight ontologies

closely resemble the RBAC role hierarchies [29]. They are even easier to

manage as users and permissions are decoupled. The second is that the

links across subjects in a social network, like those in Figure 6.1, can be

used to suggest candidate paths for permission propagation. One such

small example is depicted in Figure 6.5. Finally, the translation into a

lightweight ontology can be applied also to permission hierarchies. The

result of applying this translation process to the hierarchy in Figure 6.4 is

(partially) depicted in Figure 6.6. The natural language terms on the left

93

6.4. SUMMARY

of Figure 6.6 are meant to provide evidence of how the step from natural

language to logic allows us to organize otherwise sparse categories into a

lightweight ontology.

6.4 Summary

In this chapter we have shown how, based on the RelBAC formalization

of the access control problem in social networks, we can organize users, ob-

jects and permissions as (lightweight) ontologies. The lightweight ontology

theory and algorithms provide a way of managing the social community

knowledge into tree-like structures and model permission assignments as

binary relations between subject and object ontologies. This allows to

represent access control rules and policies as DL formulas and therefore to

reason about them using state of the art off-the-shelf reasoners. The major

part of this chapter will be published in [?].

94

Chapter 7

Semantic Matching for Access

Control

RelBAC has been proposed in [44] as a new model for the dynamic evolving

community access control scenario. OWL-DL [71] can be used to represent

the model as an ontology. As discussed in Chapter 6, Lightweight On-

tologies [?] theory and algorithms provide a way to organize the subject,

object and permissions into ontologies. This brings us not only the expres-

siveness, but also the possibility to apply modern semantic web techniques

such as semantic matching [41] on these ontologies.

From an administration point of view, RelBAC provides for dynamic

community access control with an adjustable, expressive and dis-ambiguous

system specification and also powerful management and administration on

information in various scales. However, to generate new rules on the fly

for this vast amount of changes will be time-consuming and error-prone.

Therefore, automated generation of access control rules becomes an inter-

esting topic of research.

We present in this chapter a new way of applying semantic matching

techniques on rule design and reuse in the access control domain. With a

running example, we show how this proposal works and how the matching

results are used.

95

7.1. REQUEST FOR NEW RULES

The chapter is organized as follows: Section 7.1 shows the motivation of

the request for new rules generation in a system based on RBAC; Section

7.2 introduces briefly the semantic matching techniques; Section 7.3 shows

details of how to apply semantic matching on access control (lightweight)

ontologies; and we summarize in Section 7.4.

7.1 Request for New Rules

RelBAC is a model for community access control. It has common compo-

nents such as SUBJECT, OBJECT and a special part PERMISSION as

binary relations. A domain specific (access control) Description Logic is

used to formalize the RelBAC model. SUBJECTs, OBJECTs are formal-

ized as concepts, and PERMISSIONs as roles. Hierarchies in the model

can be formalized as subsumption axioms. All the system information and

access control rules are logical formulas that can form a knowledge base as

an ontology on which automated reasoning can be performed.

In the eBusiness scenario of Chapter 6, Alice may build a lightweight

ontology as described in [36, 35, 42, 43]. To capture the various relations

between persons throughout her social network and to control the access

upon all these users in the network are simplified as to manage the links

between subject and object ontologies. For instance, Figure 6.5 shows

parts of the lightweight ontologies built by Alice and the assignment of

‘Update’ to user ‘David’ on the set of objects ‘MacBook’. In the left

lightweight ontology, David is classified as an instance of the set ‘Friend3�

Business7�Product1�Apple3’ according to his social position that he has

a Business7 relation with Alice and he works for Apple3 (the superscript

depicts the 3rd sense in an external knowledge base which is an IT company

rather than a fruit). In the right lightweight ontology, there’s a class of

objects ‘Sale1 �Digital3 � Laptop1 �MacBook1’ where Sale1 is a branch

96

CHAPTER 7. SEMANTIC MATCHING FOR ACCESS CONTROL

of Business7, MacBook1 is a Laptop1 as a product1 of Apple3. Apparently

the two concepts are different in labels, but semantically overlapping.

Things become more complicated when new ontologies arrive e.g., when

Alice likes to collaborate with some other eBusiness vendors each of which

has her own knowledge base of users and products (formalized as lightweight

ontologies). A classical way to control the access on heterogeneous knowl-

edge bases is to merge the knowledge and create new rules for the ‘new’

knowledge base. For example, Bob, another eBusiness vendor has his own

social ontology as Alice. The collaboration of Alice and Bob requires in-

tegration of their social ‘resource’s, such as product supplier, transporter,

customer, etc. in addition to the integration of the physical resources such

as goods.

So the motivation lies in at least two phases, design and reuse.

• Semantic similarity may disclose some latent relationships between

subjects and objects which appear ‘irrelevant’. These latent relation-

ships might suggest new rules that should be created for these se-

mantically relevant subjects and objects such as to permit David to

update the web categories about Apple products.

• Semantic relations between ontologies of the same type, such as be-

tween two social ontologies of Alice and Bob or between two object

ontologies or even permission ontologies, should provide a way to reuse

(propagate) the permissions assigned by existing rules. For instance

to reuse the rules assigning permissions to ‘VIP’ users of Alice onto

Bob’s ‘Senior’ customers.

7.2 Semantic Matching

Semantic Matching (S-Match)[38, 39, 40, 41] is a tool to find the semantic

relations between nodes of two lightweight ontologies. The original idea is

97

7.2. SEMANTIC MATCHING

Table 7.1: Semantic Matching on Labels

Friend3 Business7 Product1 Apple3 Lenovo1 Soccer1 � Fan2

Sale2 ⊥ � ⊥

Digital3

Laptop1 �

MacBook1 � ⊥

Thinkpad1 ⊥ �

to calculate the semantic similarity such as equal, overlapping, etc. between

the categories of the two given classifications. The core of a S-Match

procedure consists two rounds of matching on the concepts at label and

concept at node as described in [41]. Semantic similarities are defined with

sense relations. Equal ‘≡’: one concept is equal to another if there is at

least one sense of the first concept, which is a synonym of the second.

Overlapping ‘�’: one concept is overlapped with the other if there are

some senses in common. Mismatch ‘⊥’: two concepts are mismatched if

they have no sense in common. More general / specific ‘�,�’: one concept

is more general than the other if and only if there exists at least one sense

of the first concept that has a sense of the other as a hyponym or as a

meronym.

Semantic matching allows to clarify the semantic relations between the

two lightweight ontologies. Given enough background knowledge (e.g.,

MacBook1 is a Laptop1 and a product1 of Apple3), we can find the seman-

tic similarities between the two ontologies in Figure 6.2 and Figure 6.3 as

shown in Table 7.1. Here we can see, for instance, that Sale2 � Business7,

Friend3⊥Sale2 and so on, where an empty cell means that the system is

not able to find a semantic relation.

WordNet [63] is an often used background knowledge base in which

possible relations between senses (meanings of word) are provided. But for

special domains such as eBuseness or web blogs, corresponding background

98

CHAPTER 7. SEMANTIC MATCHING FOR ACCESS CONTROL

knowledge should be used as the knowledge base.

7.3 Automated Rule Generation in RelBAC

As we have pointed out that it is challenging and error-prone to manage

an access control system described in the previous sections. How to use

this kind of semantic similarities to improve the situation?

RelBAC provides reasoning ability about the knowledge base such as

consistency checking and query answering such that membership checking,

security property enforcement can be reasoning tasks at design time and

access control decision can be reasoned at run time as described in [88]. An

access control system for a larger and more complex eBusiness solution still

needs some help to generate access control rules e.g., when the vendor is not

expert in access control, as it is the most often case with social networks,

or in the case of relatively large and complex ontologies or highly dynamic

policies. We can find with S-Match [40, 39, 38] that there exists similarity

between subject and object lightweight ontologies although they may be

heterogeneous ontologies built independently. This will help to generate

candidate permissions to be submitted to the user for approval, or generate

semantically motivated constraints between subject and object categories,

and so on.

7.3.1 Rule Design

For any access control systems, the stage of rules design is very important

because a cute rule set will simplify later work of enforcement and man-

agement. Semantic Matching between subject and object ontologies will

clarify all the semantic relations between categories of the two lightweight

ontologies. For example, given the background knowledge about the rela-

tions MacBook1 is a Laptop1 as a product1 of Apple3 etc., we can find the

99

7.3. AUTOMATED RULE GENERATION IN RELBAC

semantic similarities as list in Table 7.1. As WordNet does not ‘know’ the

word as ‘MacBook’, which is common with the birth of many new words in

this Information Age, we should enrich the knowledge base with the facts

such as ‘Apple3 is a IT company selling digital products such as MacBook

and IPod.’.

From Table 7.1, we can see the semantic similarities such as Sale2 �

Business7, etc. What is interesting in this example is that the relation be-

tween Friend3 and Sale2 is ⊥ i.e. the two words has nothing in common.

It is weird but true because Friend3 means ‘a person with whom you are

acquainted’ and Sale2 is ‘the general activity of selling’. This will be the

general case when we try to match a subject ontology with an object on-

tology. If we went on with the second step of a classic S-match algorithm,

i.e. to match the concepts at node in the lightweight ontologies, ⊥s will

fill up the table. Thus, a table full of ‘⊥’ provides no suggestions for rule

design or reuse. Therefore, we only use the first round S-Match to discover

the relations. These relations provide the following suggestions to in rule

design.

Semantically Related The cells marked with ‘�,�,≡,�’ represent the

semantic similarity of the corresponding concepts. It is reasonable to

assign corresponding users the right to access the objects. For exam-

ple, the relation Sale2 � Business7 suggests that some access right,

say Read, should be assigned to the Business7 Friend3 to some Sale2

categories. It is obvious here in the small example ontologies. How-

ever, facing a large eBusiness such as Amazon.com, these similarities

will be very useful for the administrators.

Explicit Unrelated The cells marked with ‘⊥1’ represent that the corre-

sponding concepts are found ‘unrelated’ in the knowledge base. We

1
Here we shorten the axiom ‘C1 � C2 � ⊥’ as ‘C1⊥C2’.

100

CHAPTER 7. SEMANTIC MATCHING FOR ACCESS CONTROL

have to differentiate the real world semantics of these ‘⊥’s.

• Sale2⊥Friend3 is a subject/object mismatch only because they

are referring to activity and person respectively and background

knowledge do not contain similarity between different types;

• MacBook1⊥Lenovo1 comes from that ‘MacBook is a product of

Apple company’ and ‘Apple and Lenovo are different IT compa-

nies’. This explicit mismatch relation between the two concepts

suggests that no access should be assigned, even an explicit pro-

hibition should be assigned;

• Sale2⊥(Soccer1 � Fan2) covers both of the upper cases so it is

still explicitly unrelated and no access should be assigned.

I don’t know (IDN) The blank cells of the table mean that the knowl-

edge base does not know any existing relation between the correspond-

ing concepts. Then it is up to the administrator to decide whether

to assign some access or not. From Table 7.1 we can see that this

kind of cells are the majority because the knowledge base we use is

not specially for eBusiness domain and if it is specially enriched with

domain knowledge, more semantic relations will be found and more

suggestions will be offered.

7.3.2 Rule Integration

One important evolution of subject and object ontologies is to integrate

similar ontologies. For example, an eBusiness vendor will enlarge her social

network to involve more customers and very likely to integrate the cus-

tomer ontology of another vendor, or similarly to integrate another goods

ontology. The classical access control solutions require the administrator

to re-design new rules for these evolving parts. Even for the similar on-

tologies, all assignments have to be made once more. For example, the

101

7.3. AUTOMATED RULE GENERATION IN RELBAC

Figure 7.1: Bob’s Ontology Figure 7.2: Ontology Matching for Rule Reuse

vendor in the scenario of Chapter 6 would like to merge another ontology

of subjects as Bob’s Social Ontology as Figure 7.1. A customer set called

‘Senior’ has the similar intuition to the ‘VIP’ set in the previous ontology.

The resulting semantic relations can be used along the lines of what

described in the previous sections either to drive the merging of the two

ontologies or to create mappings. The mappings in turn can be used for

the propagation of permissions from one ontology to the other. Thus for

instance the system administrator might enforce that the equivalence map-

ping between the two root nodes in Figure 7.2 means that a Read permission

on the left root node propagates to the right root node. These kinds of

mappings are very similar to the C-OWL mappings introduced in [12] and

should be used whenever a full merge of the two ontologies is not advisable

or there are good reasons to keep the two ontologies distinct.

We show in Figure 7.2 the results of S-Match on two branches of the

‘friend’ ontologies in Figure 6.2 and 7.1. The semantic similarity axioms

can be added to the knowledge base of access control and the rule reuse is

102

CHAPTER 7. SEMANTIC MATCHING FOR ACCESS CONTROL

done without further efforts. For example,

{(Friend3
� Commerce1) � (Friend3

�Business7),

Business7
� α} |= Friend3

� Commerce1
� α

So any subject-centric rules that assigned to Business7 permissions will

also propagate to Friend3�Commerce1 without creating new rules for the

new subject sets. Similar reuse applies on objects as well when S-Match is

used to find the semantic similarities of the object ontologies.

7.4 Summary

Based on the RelBAC formalization of the access control problem in social

networks, we can organize users, objects and permissions as (lightweight)

ontologies. This allows to represent access control rules and policies as

DL formulas and to reason about them using state of the art off-the-shelf

reasoners. However, when the knowledge base becomes more and more

complex, the rule management tasks explode. Thus it requires automated

tools to help design and reuse rules.

In this chapter, we have shown how it is possible to use semantic match-

ing technology to discover and exploit the underlying semantic relations

between subject and object ontologies and between two user (or object)

ontologies. The resulting automated reasoning capabilities can be exploited

to support the system administrator in policy management, which is time

consuming and error-prone before.

103

Chapter 8

Evaluation

RelBAC is not only a model in theory, but applicable in real access control

systems. We will show in this chapter some evaluation results to prove the

applicability of the model.

At the beginning of the chapter, we analyze the state of the art DL

reasoners and choose Pellet [77] for RelBAC based on tests in Section 8.1;

then, we describe the algorithm to build benchmark ontologies in Section

8.2; later, in Section 8.3 we test the reasoner performance on different types

of permission assignments and different number of individuals; at last we

make a conclusion in Section 8.4.

8.1 Reasoner Selection

The RelBAC model lies in a set of domain specific Description Logics (on

different access control problems). Design time and run time administra-

tion are automated by reasoning services such as hierarchy and member-

ship managements, permission assignment administration, security prop-

erty enforcement, and access control decision. Although theoretically any

off-the-shelf DL reasoner can be used for RelBAC reasoning, there are still

some general requests to be satisfied.

105

8.1. REASONER SELECTION

• From a theoretical point of view, RelBAC describes all the access

control items, users, hierarchies, rules as description logic formula and

can be stored as a standalone OWL file. The size of the file may be as

large to tens of megabytes. The ability to process large files should be

optimized according to the possible number of access control policies.

• Close-world assumption [73] should be supported or easily added, at

least on access control discipline. As we know that classic DL follows

an open world assumption in contrast to a database schema which

assumes a closed world. But from a security point of view, those not

explicitly permitted access should be denied. It is practical that the

administration cannot predefine all the cases of deny. Thus, closed-

world assumption, at least for the access control decision reasoning,

should be enforced for RelBAC.

• The reasoner should be well structured and clearly documented so that

important parts can be cut and fit to a real RelBAC system. The

trade-off between expressiveness and efficiency is always important

for a real system and that is why many access control systems turn

for Prolog based logical frameworks such as [9, 52, 20, 57, 6] and so

on. Thus, since we chose DL as the basic logical framework, we have

to consider in an access control point of view to achieve real time

reasoning with reconfiguring and optimizing the reasoner.

There are many choices of DL reasoners. Among the most famous

are developed by University of Manchester (FaCT++[79], KAON2[64],

MSPASS[51]), Mindswap Lab of University of Maryland (Pellet1[77]), Uni-

versity of Dresden (CEL[3]) and people originated from University of Ham-

burg (RacerPro[49, 50]).

1
Now supported by Clark & Parsia, LLC.

106

CHAPTER 8. EVALUATION

Table 8.1: DL Reasoners

Language Interface Algorithm Code Support License

FaCT++ SHOIQ OWL Tableau C++ Univ. of Open

with small DIG Manchester

datatypes

KAON2 SHIN OWL Reduce Java Univ. of Open

without RDF SHIQ to Manchester

large datalog

cardinality program

MSPASS ALBO DFG SPASS C Univ. of Open

Manchester

Pellet SHOIQ OWL Tableau Java Univ. of Open

with small DIG Maryland and

datatypes Jena Clark&Parsia,LLC

RacerPro SHOIQ OWL Tableau Lisp Univ. of Semi-

DIG Hamburg

Lisp

We have compared these reasoners in Table 8.1. From the table, we

find that Fact++ and Pellet supports SHOIQ (partly) and convenient in-

terfaces, and they are both open-source, tableau-based reasoners supported

by famous groups. So they are enrolled to the second round.

8.2 Benchmark Creation

As has been discussed in Chapter 4, RelBAC may have a bunch of reason-

ing tasks such as knowledge base consistency checking, hierarchy manage-

ment, membership management, permission assignment, security property

enforcement, etc. A RelBAC knowledge base consists of two parts: P ac-

cess control policies with respect to the DL TBox; S access control states

with respect to the DL ABox.

107

8.2. BENCHMARK CREATION

As we plan to use the reasoner for design time and run time reasoning as

discussed in Chapter 4, the benchmark ontologies should have the following

features.

• Thing as the root of the ontology with 100+ individuals;

• Everybody as the root of the user subtree with 10 layers and about

100 subject groups (DL concepts);

• Everything as the root of the object subtree with 9 layers and about

100 object classes (DL concepts);

• 3 properties (for permission as DL roles) forming a 2-layer property

hierarchy;

We have not found existing benchmarks for access control. Therefore,

we create a script to build this kind of benchmarks on the fly based on

Algorithm 5. In the algorithm, Line 3-5 are used to build subject, object

and permission hierarchies (trees) according to input parameters. Then,

for each subject and object node, the algorithm creates owl concepts on

Line 7. Line 9-12 randomly generate individuals for the concepts. Last but

not least, Line 13-18 randomly create a number of permission assignments

according to the input ‘NAss’ (number of assignments).

The intuition here is just to add new lines with owl tags to a standard

OWL [69] file. All the relations between nodes are generated randomly

into tree-like hierarchies. The OWL restrictions are used to connect user

group and object class (referred as ‘permission’ in the algorithm, with

4 forms such as ‘some’, ‘all’, ‘min’, ‘max’). There is a shortcoming of

this algorithm: the random chosen restriction in ontology might lead to

inconsistency. The more restrictions added to the ontology, the ontology

appears more probably inconsistent.

108

CHAPTER 8. EVALUATION

Algorithm 5: BuildOnto1.0
Data: Tree: struct tree

Input: Int NUser, Int NObj, Int NPer, Int NInd, Int NAss

Output: an owl file

File ac = new File AC-OWL.owl;1

Add to ac the common headings of owl;2

Tree TUser = new Tree(NUser);3

Tree TObj = new Tree(NObj);4

Tree TPer = new Tree(NPer);5

for each node in TUser, TObj, TPer do6

Add to ac a new corresponding concept;7

end8

for Int i = 0; i<NInd; i++ do9

Random choose a node n from TUser or TObj;10

Add to ac a corresponding individual indi under n;11

end12

for i = 0; i<NAss; i++ do13

Random choose a node np from TPer;14

Random choose a node nu from TUser;15

Random choose a node no from TObj;16

Add to ac the permission assignment of np from nu to no;17

end18

return ac;19

8.3 Results

In this test, we choose consistency checking as the representative of all the

reasoning service provided by the reasoners. The testing results are shown

in 3 categories. First, we get a set of general purpose ontology: the ‘Wine’

ontologies from W3C.org and test the performance of the two DL reasoners

enrolled to the second round, which are FaCT++ and Pellet. Then in

order to test the reasoner performance on each type of assignment, we

create benchmark ontologies for each type of rules (‘some’, ‘only’, ‘min’ and

109

8.3. RESULTS

Table 8.2: Wine Ontologies

Wine Series Wine 0 Wine 1 Wine 2 Wine 3 Wine 4 Wine 5 Wine 6

Size(Byte) 88928 144526 279963 254098 308884 363670 642230

Class No. 142 141 141 141 141 141 141

Property No. 13 13 13 13 13 13 13

Ind. No. 162 483 805 1127 1449 1771 3381

‘max’) with random number of triples. Finally, we test the correspondence

between individual numbers and the time consumed by the reasoner.

These tests have been done on a PC with Intel Pentium D 3.00GHz

processor, 4.00GB RAM (2G*2), 160GB HDD. We use Protégé 4 as the

platform to load in the ontologies.

8.3.1 Performance Test

We test the performance of FaCT++ and Pellet with the wine ontologies as

list in Table 8.2. The results of the tests are in Table 8.3. ‘F’ and ‘P’ stand

for FaCT++ and Pellet respectively. In the reasoner synchronization stage,

the reasoner cleans the knowledge base, converts the ontology to DIG api

and updates reasoner; during consistency checking, the reasoner prepares

a query in <0.001 ms, checks the consistency and updates the ontology in

the platform. We can see from the evaluation results the following:

• With the ontology scale increasing, the time for checking the consis-

tency plays a larger and larger part in the total time. FaCT++ takes

more time than Pellet on this section.

• The time consumed for consistency checking increases monotonously

but not proportional to the size of the ontology. For the first 4 tests,

the time spent by FaCT++ increases faster than by Pellet which

110

CHAPTER 8. EVALUATION

means Pellet spends less time to check the consistency of the same

complexity.

• Through the first 4 tests, we find that Pellet performs better in con-

trast to FaCT++ for larger number of individuals in the benchmark

ontologies. But both reasoners do not perform well with large number

of individuals. For the test on Wine 6, Pellet throws a ‘JaveHeap-

Stack’ error while FaCT++ successfully finishes checking although

quite a lot of time has been used.

• The complexity of wine ontology series increases only on the individual

number, but not in concept or property. This does not require more

expressive DL language which means both two reasoners can reason

about ontologies of this DL language (ALHQ).

As shown in Table 8.2, the complexity increase is only due to the number

of individuals involved in the ontology. So the test means that given a

‘computable’ number of individuals, Pellet performs better than FaCT++.

So we choose Pellet as the reasoner for further RelBAC evaluation.

8.3.2 Single Type Assignment

Here, we list the results of consistency checking on one single type of as-

signment: ‘some’, ‘only’, ‘min’ and ‘max’. The cardinality of ‘min’ and

‘max’ permissions are randomly chosen among integers from 1 to 50.

‘some’ we have the test on 10 randomly built ontolgies with 1 to 50 ‘some’

permissions assigned. The time to check the consistency of the ontol-

ogy does not follow any regular proportion. The average time spent

on consistency checking for 5 ontologies with 545 to 775 triples varies

from 9 to 136 milliseconds.

111

8.3. RESULTS

Table 8.3: FaCT++ vs. Pellet

Wine Synchronize Reasoner Check Consistency Total

Reasoner Clean DIG Update Prepare Check Update

Wine 0 F 0.016 0.125 0.078 <0.001 6.735 0.016 7.031

P 0.016 0.124 0.082 <0.001 1.093 0.016 1.359

Wine 1 F <0.001 0.266 0.156 <0.001 62.031 <0.001 62.547

P <0.001 0.265 0.172 <0.001 8.828 0.032 9.375

Wine 2 F 0.015 0.453 0.25 <0.001 181.375 <0.001 182.125

P <0.001 0.442 0.328 <0.001 23.36 0.031 24.188

Wine 3 F 0.032 0.672 0.344 <0.001 369.75 0.032 370.907

P <0.001 1.031 0.406 <0.001 46.438 0.015 47.922

Wine 4 F 0.031 0.797 0.688 <0.001 624.656 0.031 626.281

P 0.015 0.969 0.891 <0.001 77.625 0.047 80.015

Wine 5 F 0.032 0.984 0.453 <0.001 914.203 0.031 915.782

P 0.001 0.922 1.484 <0.001 2108.438 0.031 2111.406

Wine 6 F 0.016 1.781 1.172 <0.001 3323.953 0.016 3327.313

P 0.016 1.75 1.125 <0.001 - - -

‘only’ we have the test on 10 randomly built ontolgies with 1 to 50 ‘all’

permissions assigned. The time to check the consistency of the ontol-

ogy does not follow any regular proportion. The average time spent

on consistency checking for 5 ontologies with 570 to 730 triples varies

from 15.8 to 119 milliseconds.

‘min’ we have the test on 10 randomly built ontolgies with 1 to 50 ‘min’

permissions assigned. The time to check the consistency of the ontol-

ogy does not follow any regular proportion. The average time spent

on consistency checking for 5 ontologies with 570 to 828 triples varies

from 47.6 to 261.6 milliseconds.

‘max’ we have the test on 10 randomly built ontolgies with 1 to 50 ‘max’

permissions assigned. The time to check the consistency of the ontol-

ogy does not follow any regular proportion. The average time spent

112

CHAPTER 8. EVALUATION

Figure 8.1: Reasoner Performance on Single Type Assignment

on consistency checking for 5 ontologies with 546 to 828 triples varies

from 14.6 to 185.4 milliseconds.

As shown in Figure 8.1, these automatically generated benchmark on-

tologies are simple and easy to check (less than 300 ms). The reasoning

tasks can be achieved in ‘real’ time.

8.3.3 Multiple Type Assignment

Here we list the results of consistency checking for ontologies with multiple

type assignments: ‘some’+‘only’, ‘min’+‘max’ and 4 types as is shown in

Figure 8.2.

‘some’+‘all’ we have the test on 50 randomly built ontolgies with 1 to 50

‘some’ or ‘all’ permissions assigned. The time to check the consistency

of the ontology doesn’t follow any regular proportion. The average

time spent on consistency checking for 5 ontologies with 540 to 785

113

8.3. RESULTS

Figure 8.2: Reasoner Performance on Multiple Types Assignments

triples varies from 14.6 to 185.4 milliseconds. The best and worst

cases are 5 and 646 ms.

‘min’+‘max’ we have the test on 50 randomly built ontolgies with 1 to 50

‘min’ or ‘max’ permissions assigned. The time to check the consistency

of the ontology doesn’t follow any regular proportion. The average

time spent on consistency checking for 50 ontologies with 540 to 834

triples varies from 5 to 35192.6 milliseconds. The best and worst cases

are 4 and 35804 ms.

4 Types we have the test on 188 randomly built ontolgies with 1 to 50

‘some’, ‘all’, ‘min’ or ‘max’ permissions assigned. The time to check

the consistency of the ontology doesn’t follow any regular proportion.

The average time spent on consistency checking for 188 ontologies

with 540 to 810 triples varies from 6.6 to 5558.2 milliseconds. The

114

CHAPTER 8. EVALUATION

best and worst cases are 5 and 6414 ms.

The tests results highlight that:

1. Although some of the tests (2%) appear abnormally time-consuming

(35804ms to the most), the rest cost acceptable time even we expect

a ‘real-time’ response.

2. The worst and average cases time consumed for ontologies with just

‘min’+‘max’ is longer than the 4 type included ontologies. From the

previous tests, ‘some’+‘only’ assignments cost far less. we may con-

clude that the cardinality related assignments are relatively time con-

suming.

3. As the assignments in each ontology are randomly generated, the com-

plexities of each ontology should be similar and the time consumed for

consistency checking should be relatively similar. In the real case, the

triple number does not affect the checking much. There are 2% ontolo-

gies that cost exceptional long time to check the consistency. After

exploring into the details of the ontologies, we find that the ‘min’ and

‘max’ rules with large cardinality, say above 40, are the main reason

for this kind of long time consuming.

8.3.4 Increasing Individual

To test the impacts of individual number on the consistency checking,

we create demo ontologies with 20 subject concepts, 20 object concepts, 10

permission properties, 20 assignments and increasing number of individuals

(125, 250, 500, 750, 1000). Algorithm 5 is reused to create these ontologies

with random trees for subject, object concepts and permission roles.

In Figure 8.3, we see 5 kinds of points connected with lines. Each point

corresponds to the average time of 5 tests spent on consistency checking

115

8.3. RESULTS

Figure 8.3: Reasoner Performance on Increasing Individuals

of an ontology created as above. Each type of points are connected with

colored lines to show the variation among exactly the same ontology with

the same number of arbitrary permission assignments. The figure shows

that,

• The time consumed for tests on different permission assignment (given

other conditions remain the same) is not stable. This means that the

parameters of the assignments, such as the numbers chosen for ‘min’

and ‘max’ rules play an important part in the checking. The ontology

with rules of larger numbers tend to be more time consuming.

• The time spent for each kind of ontologies (with increasing individual

numbers while other conditions the same) does not increase with as-

cending individual number. This means that the individual number

is less important than the number of ‘min’/‘max’ assignments.

116

CHAPTER 8. EVALUATION

• The line of larger individual numbered ontologies is ‘shorter’. As

we test 100 ontologies of each kind, the lines should be connections

of 100 points. But some of the tests throw ‘OutOfMemory’ error

that terminate irregularly and in such test, no checking results (true

or false) or time consumed is given so in these cases, no points are

drawn on the figure. The portion of such errors increase with the

accumulating individual numbers. When we run with larger memories

for the Java VM, the tendency remains.

• A symptom shown in the testing results (not shown in Figure 8.3) is

that the larger number of individuals in the ontologies, the ontology

has more possibility to be inconsistent. This is coherent to the intu-

ition that the ‘min’ and ‘max’ rules are more easily violated with larger

number of individuals. This means with the growth of the knowledge

base, it tends to be more error-prone which is a good reason that au-

tomated tools should be provide for the new rule design or existing

rule reuse.

8.4 Summary

As a conclusion, we find the following out of the testing results.

1. Out of many off-the-shelf reasoners, we choose Pellet [77] as the one

for RelBAC, based on its performance in contrast to other reasoners

such as FaCT++ [79].

2. The reasoner performance is acceptable and especially good in most

the cases for the ‘some’ and ‘only’ rules. The increasing individual

number costs more memory, and the time for consistency reasoning.

3. In the bad cases, the arbitrarily assignments with number restrictions

are challenging for the reasoners and we should adjust the reasoner

117

8.4. SUMMARY

on this or not use less ‘min’/‘max’ rules in real cases.

4. There are many practical issues left for implementation stage such as

the Closed World Assumption [73].

In conclusion, the test results are encouraging and challenging. We

see the ability of RelBAC on automated reasoning from a quantity point

of view in addition to the quality view in Chapter 4. However we still

have much to do as these general purpose DL reasoners, no matter Pellet,

FaCT++ or any others, are not specially designed for the domain of access

control, not to say for RelBAC. Thus adjustments should be taken to

meet the practical needs in RelBAC.

118

Chapter 9

Implementation

The implementation of a real RelBAC based system is non-trivial, because

the access control component of a system has the risk to be the bottleneck

as every request will have to be authorized by the access control before

execution.

In this chapter, we present the system architecture of a typical RelBAC

based access control system (Section 9.1). Moreover, we analyze the ne-

cessity and practical solution for the closed world assumption (Section 9.2)

and the implementation of the ‘All’ rule (Section 9.3).

9.1 System Architecture

A system based on RelBAC includes three parts, the user interface to deal

with input and output; the knowledge base consisting of access control

policy specifications (P) and access control state specifications (S); and

the reasoner, used as a blackbox which can reason about knowledge base

and queries.

Here we present the architecture of a system implementing the RelBAC

model in Figure 9.1. In general, hollow arrows stand for user related op-

eration or information exchange; solid arrows represent internal data flow

and interaction. From the administration point of view, Arrows (a) and

119

9.1. SYSTEM ARCHITECTURE

Figure 9.1: The System Architecture using RelBAC.

(b) are direct queries and updates to the knowledge base, where Arrow

(h) represents the interaction of knowledge between P and S. The design

time reasoning services, which allow to perform redundancy checking, con-

flict checking, etc. are offered to the administrator by Arrow (c). Arrow

(e), (g) and (f) stand respectively for TBox reasoning, ABox reasoning

and TBox+ABox reasoning. From a requester point of view, a query for

permission is interpreted by the UI and handed to the reasoner through

Arrow (d). The reasoner processes the query as an entailment reasoning

task with respect to the knowledge base through Arrow (e), (f) and (g) to

provide access control decisions at run time.

Our implementation integrates an open source reasoner Pellet [77] through

owl-api. Pellet is developed in Java and easy to be integrated into large

software systems. The state of the art Pellet 2.0rc4 offers necessary reason-

ing ability for entailment, consistency, subsumption, and realization. The

incremental reasoning about ABox updates in Pellet is also a nice feature

for RelBAC as the run time membership update relies on ABox changes

and reasoning.

We have built some ontologies using RDF/OWL which describes the

scenario of the SFA [82] example in Section 4.1.2. The sample policies

listed in Chapter 4 were also included. To avoid biases, we randomly

120

CHAPTER 9. IMPLEMENTATION

Table 9.1: Policy Base Consistency Test

Size Set Rule Ind. Time(ms)

1 61.3 14 10 426 48.0

2 86.8 141 131 162 592.0

3 141.1 141 131 483 2191.0

4 273.4 141 131 805 5677.0

generate groups and classes of hundreds of individuals. The results are

listed in Table 9.1.

A small business with 5 user groups, 9 object classes, about 400 indi-

viduals (including employees and documents) with 10 access control rules

can be formalized in an ontology of 61.3KB. It takes less than 50 ms to

complete consistency checking as is shown by the first record of the table.

When the business grows ten times in sets (either group or class) numbers

and in rules numbers (as record 2), the checking time grows too. Even if

we just increase the number of individuals randomly for users or objects,

the time consumed grows exponentially. Although preliminary, the tests

show that the chosen reasoner does not scale well to real access control

problems. There is still much work to do for a real-time access control

system.

9.2 Closed World Assumption

Closed World Assumption (CWA) is about the completeness of the knowl-

edge base. R.Reiter discussed this problem based on the database schema

in [73]. It is intuitively to assume the ‘closed world’ for many common

sense schemas such as in a database scenario, the records form a ‘com-

plete’ knowledge that other information not in the records is considered

none existing. On the contrary, Description Logic [4] assumes an ‘open’

world, which means that the knowledge bases are assumed incomplete such

121

9.2. CLOSED WORLD ASSUMPTION

that the short of information will not necessarily lead to a negative rea-

soning result.

RelBAC is formalized in a DL based logical framework so the semantics

of a RelBAC knowledge base do not support the CWA. This is fine with

a common DL based system, but not OK for RelBAC. An obvious and

intuitive reason is that from a security point of view, the access control de-

cision (mentioned in Section 4.2) cannot follow the open world assumption

and offer an answer as ‘I don’t know’. As is pointed out in the basic access

control decision algorithm in Section 1.1, if no knowledge supports ‘deny’,

neither for ‘permit’, the system should reject the access request.

To the best of our knowledge, there is no DL reasoner that supports full

CWA though some of them are declared to do so partly.

We see at least 2 kinds of closed world requests for RelBAC.

Access Control Decision For security reasons, a non-explicitly permit-

ted request should be denied. This means only when the request query

is the reasoning result, otherwise it is denied by the system.

To achieve this, when we use the reasoner for access control decision

via the information flow as denoted by the arrow (d) in Figure 9.1,

the query answer of the reasoner should not be returned directly to

the requester. An ‘interpretation’ layer should be added to achieve

Algorithm 1. When the reasoner does not give explicit answer of

‘permit’, the layer should get output information of the reasoner and

interpret it to the requester, for example to tell the user that the

reason of deny is that the requester is in a group that restricted to

perform such access.

Membership Management An integrity constraint of user membership

is a good motivation of CWA. For instance,

Friend � ∃Read.Blog � ∃Upload.V ideo

122

CHAPTER 9. IMPLEMENTATION

is not sufficient to declare that a friend is allowed to either read some

blog entries or upload some videos. Actually any knowledge base with

Friend(ann) is a model of this concept. But it does not necessarily

tell whether Ann can read blog or upload video. Here, ∃Read.Blog

and ∃Upload.V ideo are two virtual user groups that Ann should be

a member of either (or both) of them, but cannot be a member of

neither. Thus, in the membership management, RelBAC should ex-

plicitly claim in the S about all the memberships of individuals. For

the same example, additional axioms such as

{ann, bob} � ∃Read.Blog or {bob, cate} � ∃Upload.V ideo

should be designed.

This is applicable for not only subject, but object and permission

as well. To ‘achieve’ CWA, in a DL based logical system, such as

RelBAC, such kind of knowledge should be explicitly declared.

We can support CWA to some extend in RelBAC by applying the

proposals above. It is good enough for now, and we are trying to find new

solutions when new problem arises.

9.3 ‘All’ Rule Implementation

The ‘All’ rule has been discussed in Section 3.5 as rules (3.24–3.27). It is an

important kind of rule because it facilitates administration by simplifying

the numerous rules on Cartesian products of the subject and object sets

into one single rule. Moreover, this is the classical way to assign access from

a subject set to an object set before RelBAC appears. People are familiar

with such assignments. Although RelBAC provides far more fine-grained

access control rules, among which the cardinality related rules have never

been supported before, this kind of classic assignment should be supported.

123

9.3. ‘ALL’ RULE IMPLEMENTATION

As shown in Theorem 1, the ‘All’ rule refers to the combination use of

complement constructor of both role and class. Generally speaking, class

complement is fairly easy to achieve with a universal concept. But the

complement of role is rather difficult. It is regarded by [26] as a ‘complex’

role which may cause undecidability of the corresponding DL language.

Intuitively, the ‘All’ rule defines a set of elements that each has a relation

with another given set of elements. In contrast, the original ‘universal value

restriction’ in DL defines that set of elements that each has a given relation

only with another set of elements. Well, the latter can be traced through

the given relation and secured that the target element is in a certain set

but the former faces the problem to search for all the relations and then to

find the complements of the given relation. This is almost impossible as a

reasoner cannot easily get a ‘universal’ role. So it is theoretically possible

to have ‘All’ rules represented in classic DL extended with class and role

negations, but it is hard to reason about ‘All’ rules in practice.

How to solve this problem in the real life? Actually, we encode the

RelBAC knowledge base with OWL-DL language and use the OWL-API

for Pellet. SWRL [78] language is an acceptable OWL-API for Pellet too.

We see that an ‘All’ rule can be encoded into a SWRL rule. Thus, the

reasoner can infer with the SWRL rules instead of using role negation.

For example, the following ‘All’ rule

Friend � ∀Blog.Read

will be encoded as a SWRL rule as follows.

Friend(?x) ∧Blog(?y) → Read(?x, ?y)

Thus through the OWL-API, these rules can be encoded into the RelBAC

ontology and dealt by the DL reasoner.

124

CHAPTER 9. IMPLEMENTATION

9.4 Summary

In this chapter, a typical RelBAC system architecture has been proposed

to illustrate the inter-operation between parts of the components. Several

practical issues on RelBAC implementation are also studied here such

as the Close World Assumption and the realization of the ‘All’ rules. In

our preliminary implementation of RelBAC, we built a basic system with

only singleton groups and ‘All’ rules were replaced with ‘some’ rules. In

the future, we will test the way to replace ‘All’ rules with SWRL format.

As for closed world assumption, we use the ‘owl:one-of’ constructor to

enumerate all the known individuals for the membership management and

use an interpretor layer to achieve the default ‘deny’ decision. There are

still many practical problems for implementation that we’ll discover and

solve in the future.

125

Chapter 10

Conclusion

The new Web 2.0 solutions bring the web to people regardless of age, gen-

der or interest. The upcoming era of the glorious web allows end users not

only to read and download but also to publish and share. Moreover, people

seem to neglect the problem of privacy, that we lose control of these data

we put online. Scholars of computer science come to realize this specific

problem of access control, and accordingly many efforts are made to apply

existing access control models in these recently emerging scenarios. How-

ever, the fast developing web technologies bring new challenges wherein

existing static models, such as RBAC, cannot formalize the dynamic sub-

jects and objects, not to say the context changing related permissions.

In the thesis, we have developed a novel access control model named

RelBAC to face these new challenges. In addition, RelBAC is formal-

ized with access control domain specific Description Logics. In RelBAC,

a permission is a binary relation of an Entity Relationship model, and

formalized as a Description Logic role. This feature makes it possible to

control the access in fine-grained cardinality.

The advantage of using a logical framework for an access control model

is the automated reasoning ability of the logic. The logical formalization

of RelBAC simplifies the access control management into automated rea-

127

soning provided by any off-the-shelf reasoner such that at design time, the

reasoner can help to check redundancy and conflicts in hierarchy and mem-

bership management, enforce security properties of separation of duties; at

run time, the reasoner can answer the access control request and help to

make access control decisions.

RelBAC is not a model generated on the fly, as it has been inspired

by many existing models such as AM, RBAC etc. Thus it inherits their

advantages such as object-oriented rules from AM and subject hierarchies

from RBAC. It can be adjusted to support these models by small exten-

sions. We have shown in the thesis, how to adjust RelBAC to support

modern access control models such as RBAC.

As an access control model for the web applications, RelBAC model

can take use of many semantic web technologies such as lightweight on-

tology and semantic matching. The knowledge base can be encoded into

lightweight ontologies so that the permission can propagate through the

unified relations in the hierarchies. Semantic matching can help to find

the similarities between subject and object and suggest for new access

control rules. It can also help to reuse existing rules with the similarities

found between subjects or between objects. We have also shown in this

thesis these possibilities and details to apply these tools on RelBAC.

In this thesis, some evaluations have been performed in order to choose

a proper reasoner and to understand the weights of parameters such as the

number of individuals or the different types of permission assignments. We

have implemented the basic idea of RelBAC and analyzed several practical

issues for the implementation.

Among several open issues, we intend to look at the following in the

future.

• The complexity of security problem formalization is still not clear and

the theoretical work to represent and analyze corresponding problems

128

CHAPTER 10. CONCLUSION

in RelBAC will solid the foundation of the model and improve its

popularity.

• We have proposed partial solutions to some issues such as Closed

World Assumption in the access control domain. However, there is

still systematical analysis work in this direction.

• The full implementation of RelBAC and the adjustment of general

purpose reasoners to fit the access control domain still need efforts.

In brief, RelBAC is a novel, expressive and extensible model for the web

with powerful reasoning ability. Therefore, we foresee its popular usage in

the near future.

129

Bibliography

[1] Trusted Computer System Evaluation Criteria (Orange Book). United

States Department of Defense, DoD Standard 5200.28-STD., Decem-

ber 1985. 16, 17

[2] Mart́ın Abadi, Michael Burrows, Butler Lampson, and Gordon

Plotkin. A calculus for access control in distributed systems. ACM

Transactions on Programming Language and Systems, 15(4):706–734,

1993. 29, 30

[3] F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time

reasoner for life science ontologies. In U. Furbach and N. Shankar,

editors, Proceedings of the 3rd International Joint Conference on Au-

tomated Reasoning (IJCAR’06), volume 4130 of Lecture Notes in Ar-

tificial Intelligence, pages 287–291. Springer-Verlag, 2006. 106

[4] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele

Nardi, and Peter F. Patel-Schneider, editors. The description logic

handbook: theory, implementation, and applications. Cambridge Uni-

versity Press, New York, NY, USA, 2003. 2, 31, 42, 54, 57, 60, 122,

143

[5] Albert-László Barabási. Linked : the new science of networks. Perseus

Pub., Cambridge, Mass., 2002. 88

131

BIBLIOGRAPHY

[6] Steve Barker, Michael Leuschel, and Mauricio Varea. Efficient and

flexible access control via jones-optimal logic program specialisation.

Higher-Order and Symbolic Computation, 2007. 106

[7] Bebo. http://www.bebo.com/. 11

[8] Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. Trbac: A

temporal role-based access control model. ACM Transactions on In-

formation System Security, 4(3):191–233, 2001. 16, 25

[9] Elisa Bertino, Barbara Catania, Elena Ferrari, and Paolo Perlasca. A

logical framework for reasoning about access control models. ACM

Transactions on Information and System Security, 6(1):71–127, 2003.

29, 31, 106

[10] B.Lampson. Protection. In Proc. 5th Princeton Conf. on Information

Sciences and Systems, Princeton, 1971. Reprinted in ACM Operating

Systems Rev. 8, 1, pages 18–24, 1971. 15, 17, 37, 75

[11] Blogger. http://www.blogger.com/. 1, 10

[12] Paolo Bouquet, Fausto Giunchiglia, Frank Harmelen, Luciano Serafini,

and Heiner Stuckenschmidt. C-owl: Contextualizing ontologies. In

ISWC, pages 164–179, 2003. 102

[13] Krysia Broda and Alessandra Russo. Compiled Labelled Deductive

Systems for Access Control (2005). In We Will Show Them: Essays in

Honour of Dov Gabbay, volume 1, pages 309–338. College Publications,

2005. 29

[14] Krysia Broda and Alessandra Russo. Compiled Labelled Deductive

Systems for Access Control (2005). In We Will Show Them: Essays in

Honour of Dov Gabbay, volume 1, pages 309–338. College Publications,

2005. 30

132

BIBLIOGRAPHY

[15] Ji-Won Byun, Elisa Bertino, and Ninghui Li. Purpose based access

control of complex data for privacy protection. In SACMAT ’05: Pro-

ceedings of the tenth ACM symposium on Access control models and

technologies, pages 102–110, New York, NY, USA, 2005. ACM. 16, 81,

83

[16] Ji-Won Byun and Ninghui Li. Purpose based access control for privacy

protection in relational database systems. VLDB J., 17(4):603–619,

2008. 25

[17] Jung-Hwa Chae and Nematollaah Shiri. Formalization of rbac policy

with object class hierarchy. In Ed Dawson and Duncan S. Wong,

editors, ISPEC, volume 4464 of Lecture Notes in Computer Science,

pages 162–176. Springer, 2007. 24, 29, 31

[18] Junghwa Chae. Towards modal logic formalization of role-based access

control with object classes. In FORTE, pages 97–111, 2007. 29

[19] Peter P. Chen. The entity-relationship model - toward a unified view

of data. ACM Transactions on Database Systems, 1(1):9–36, 1976. 2,

28, 36

[20] M. Coetzee and J. H. P. Eloff. Towards web service access control.

Computers & Security, 23(7):559–570, October 2004. 106

[21] Matthew Collinson and David Pym. Algebra and logic for access con-

trol. Technical Report HPL-2008-75, July 2008. Submitted to Formal

Aspects of Computing. 29, 30

[22] Dmoz. http://www.dmoz.org/. 8

[23] F. Dridi, B. Muschall, and G. Pernul. Administration of an rbac

system. System Sciences, 2004. Proceedings of the 37th Annual Hawaii

International Conference on, pages 6 pp.–, Jan. 2004. 23

133

BIBLIOGRAPHY

[24] eBay, Inc. Web site, 1995. http://www.ebay.com/. 1, 25

[25] OASIS eXtensible Access Control Markup Language (XACML) TC.

http://www.oasis-open.org/committees/tc home.php?

wg abbrev=xacml. 28

[26] E.Zolin. Dl-navigator. http://www.cs.man.ac.uk/ ezolin/dl/. 124

[27] Facebook. http://www.facebook.com/. 1, 10

[28] D. Ferraiolo and R. Kuhn. Role-based access controls. In 15th NIST-

NCSC National Computer Security Conference, pages 554–563, 1992.

20

[29] David F. Ferraiolo, Ravi S. Sandhu, Serban I. Gavrila, D. Richard

Kuhn, and Ramaswamy Chandramouli. Proposed NIST standard for

role-based access control. Information and System Security, 4(3):224–

274, 2001. 20, 21, 23, 38, 49, 67, 69, 77, 78, 93

[30] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. Winsborough, and

B. Thuraisingham. Rowlbac: representing role based access control in

owl. In SACMAT ’08: Proceedings of the 13th ACM symposium on

Access control models and technologies, pages 73–82, New York, NY,

USA, 2008. ACM. 31, 32

[31] Flickr. http://www.flickr.com. 1, 10

[32] OASIS Advancing Open Standards for the Information Society.

http://www.oasis-open.org/. 28

[33] Friendster. http://www.friendster.com/. 11

[34] Serban I. Gavrila and John F. Barkley. Formal specification for role

based access control user/role and role/role relationship management.

134

BIBLIOGRAPHY

In RBAC ’98: Proceedings of the third ACM workshop on Role-based

access control, pages 81–90, New York, NY, USA, 1998. ACM. 55

[35] Fausto Giunchiglia, Maurizio Marchese, and Ilya Zaihrayeu. Towards

a theory of formal classification. In CandO 2005,AAAI-05, Pittsburgh,

Pennsylvania, USA, July 9-13 2005 2005. 89, 96

[36] Fausto Giunchiglia, Maurizio Marchese, and Ilya Zaihrayeu. Encod-

ing classifications into lightweight ontologies. In ESWC, pages 80–94,

2006. 92, 96

[37] Fausto Giunchiglia, Maurizio Marchese, and Ilya Zaihrayeu. Encoding

classifications into lightweight ontologies. J. Data Semantics, 8:57–81,

2007. 92

[38] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. Seman-

tic schema matching. In In Proceedings of CoopIS, pages 347–365.

Springer, 2005. 97, 99

[39] Fausto Giunchiglia and Mikalai Yatskevich. Element level seman-

tic matching. In Meaning Coordination and Negotiation workshop at

ISWC’04. Hiroshima, Japan, November 2004. 97, 99

[40] Fausto Giunchiglia, Mikalai Yatskevich, and Enrico Giunchiglia. Effi-

cient semantic matching. In Proceedings of the 2nd European semantic

web conference (ESWC’05). LNCS, Springer Verlag, 2005. 97, 99

[41] Fausto Giunchiglia, Mikalai Yatskevich, and Pavio Shvaiko. Semantic

matching: Algorithms and implementation. Journal on Data Seman-

tics, pages 1–38, 2007. 2, 95, 97, 98

[42] Fausto Giunchiglia and Ilya Zaihrayeu. Lightweight ontologies, 2008.

87, 89, 96

135

BIBLIOGRAPHY

[43] Fausto Giunchiglia, Ilya Zaihrayeu, and Uladzimir Kharkevich. For-

malizing the get-specific document classification algorithm. In In 11th

European Conference on Research and Advanced Technology for Digi-

tal Libraries. LNCS Springer Verlag, 2007. 91, 96

[44] Fausto Giunchiglia, Rui Zhang, and Bruno Crispo. Relbac: Relation

based access control. In SKG ’08: Proceedings of the 2008 Fourth

International Conference on Semantics, Knowledge and Grid, pages

3–11, Washington, DC, USA, 2008. IEEE Computer Society. vi, 36,

95

[45] Fausto Giunchiglia, Rui Zhang, and Bruno Crispo. Ontology driven

community access control. In SPOT2009 - Trust and Privacy on the

Social and Semantic Web, to appear 2009. vi, 2, 94, 95

[46] Jennifer Golbeck and James Hendler. Reputation network analysis for

email filtering. In In Proc. of the Conference on Email and Anti-Spam

(CEAS), Mountain View, 2004. 26

[47] S. Greco, N. Leone, and P. Rullo. Complex: An object-oriented logic

programming system. IEEE Transactions on Knowledge and Data

Engineering, 4(4):344–359, 1992. 31

[48] Adam Greenfield. Everyware: The Dawning Age of Ubiquitous Com-

puting. Peachpit Press, Berkeley, CA, USA, 2006. 9

[49] V. Haarslev and R. Möller. Racer: A core inference engine for the se-

mantic web. In Proceedings of the 2nd International Workshop on

Evaluation of Ontology-based Tools (EON2003), located at the 2nd

International Semantic Web Conference ISWC 2003, Sanibel Island,

Florida, USA, October 20, pages 27–36, 2003. 106

136

BIBLIOGRAPHY

[50] V. Haarslev and R. Möller. Racer: A core inference engine for the se-

mantic web. In Proceedings of the 2nd International Workshop on

Evaluation of Ontology-based Tools (EON2003), located at the 2nd

International Semantic Web Conference ISWC 2003, Sanibel Island,

Florida, USA, October 20, pages 27–36, 2003. 106

[51] U. Hustadt and R. A. Schmidt. MSPASS: Modal reasoning by trans-

lation and first-order resolution. In R. Dyckhoff, editor, Automated

Reasoning with Analytic Tableaux and Related Methods, International

Conference (TABLEAUX 2000), volume 1847 of Lecture Notes in Ar-

tificial Intelligence, pages 67–71. Springer, 2000. 106

[52] Ismail Khalil Ibrahim and Werner Winiwarter. Winiwarter: Content-

based management of document access control. In 14th International

Conference on Applications of Prolog (INAP), Prolog Association of,

pages 78–86, 2001. 106

[53] Audun Josang and Roslan Ismail. The beta reputation system. In In

Proceedings of the 15th Bled Electronic Commerce Conference, 2002.

26

[54] James Joshi, Elisa Bertino, and Arif Ghafoor. An analysis of ex-

pressiveness and design issues for the generalized temporal role-based

access control model. IEEE Transactions on Dependable and Secure

Computing, 2(2):157–175, 2005. 25

[55] James Joshi, Elisa Bertino, Usman Latif, and Arif Ghafoor. A gener-

alized temporal role-based access control model. IEEE Transactions

on Knowledge and Data Engineering, 17(1):4–23, 2005. 16, 25

[56] Thumrongsak Kosiyatrakul, Susan Older, and Shiu-Kai Chin. A modal

logic for role-based access control. Computer Network Security, pages

179–193, 2005. 29

137

BIBLIOGRAPHY

[57] Michael Lemay, Omid Fatemieh, and Carl A. Gunter. Policymorph:

interactive policy transformations for a logical attribute-based access

control framework. In SACMAT ’07: Proceedings of the 12th ACM

symposium on Access control models and technologies, pages 205–214,

New York, NY, USA, 2007. ACM Press. 106

[58] Ninghui Li and Mahesh V. Tripunitara. Security analysis in role-based

access control. ACM Transactions on Information System Security,

9(4):391–420, 2006. 66, 70

[59] Ninghui Li, Mahesh V. Tripunitara, and Ziad Bizri. On mutually

exclusive roles and separation-of-duty. ACM Transactions on Infor-

mation System Security, 10(2):5, 2007. 68, 69

[60] LinkedIn. http://www.linkedin.com/. 10

[61] Fabio Massacci. Reasoning about security: A logic and a decision

method for role-based access control. In ECSQARU-FAPR, pages

421–435, 1997. 29, 30

[62] W. McCune. Otter 3.3 reference manual and guide, 2003. 30

[63] George A. Miller. Wordnet: A lexical database for english. Commu-

nications of the ACM, 38:39–41, 1995. 98

[64] Boris Motik. Kaon2. http://kaon2.semanticweb.org/. 106

[65] Matthew J. Moyer and Mustaque Ahamad. Generalized role-based

access control. In ICDCS, pages 391–398, 2001. 16, 24

[66] MySpace. http://www.myspace.com/. 10

[67] Friend of a Friend. http://www.foaf-project.org/. 26, 88

[68] Web of Trust. http://www.mywot.com/. 26, 88

138

BIBLIOGRAPHY

[69] OWL. http://www.w3.org/TR/owl-guide/. 32, 87, 108

[70] OWL-API. http://owlapi.sourceforge.net/. 87

[71] OWL-DL. http://www.w3.org/TR/owl-semantics/. 87, 95

[72] Jaehong Park and Ravi Sandhu. The ucon¡sub¿abc¡/sub¿ usage con-

trol model. ACM Transactions on Information and System Security,

7(1):128–174, 2004. 16

[73] Raymond Reiter. On closed world data bases. In Logic and Data

Bases, pages 55–76, 1977. 4, 106, 117, 121

[74] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.

Youman. Role-based access control models. IEEE Computer,

29(2):38–47, 1996. 15, 20, 28

[75] Leo Sauermann, Ansgar Bernardi, and Andreas Dengel. Overview and

Outlook on the Semantic Desktop. In Stefan Decker, Jack Park, Den-

nis Quan, and Leo Sauermann, editors, Proceedings of the 1st Work-

shop on The Semantic Desktop at the ISWC 2005 Conference, vol-

ume 175 of CEUR Workshop Proceedings, pages pp. 1–19. CEUR-WS,

November 2005. http:// CEUR-WS.org/Vol-175/. 38

[76] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame,

M. Eisler, and D. Noveck. Network file system (nfs) version 4 pro-

tocol, 2003. 18, 75

[77] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pel-

let: A practical owl-dl reasoner. Submitted for publication to Journal

of Web Semantics., 2003. 105, 106, 117, 120

[78] SWRL. http://www.w3.org/Submission/SWRL/. 124

139

BIBLIOGRAPHY

[79] D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: Sys-

tem description. In Proc. of the Int. Joint Conf. on Automated Rea-

soning (IJCAR 2006), volume 4130 of Lecture Notes in Artificial In-

telligence, pages 292–297. Springer, 2006. 106, 117

[80] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Sys-

tems, Volume I. Computer Science Press, 1988. 31

[81] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Sys-

tems, Volume II. Computer Science Press, 1989. 31

[82] Brett Walker and Stuart J. Barnes. Wireless sales force automation:

concept and cases. IJMC, 3(4):411–427, 2005. 60, 67, 121

[83] Wikipedia. http://www.wikipedia.org/. 1

[84] XML. http://www.w3.org/XML/. 28

[85] Yahoo! http://dir.yahoo.com/. 8

[86] Bin Yu and Munindar P. Singh. A social mechanism of reputation

management in electronic communities. In Cooperative Information

Agents, pages 154–165, 2000. 26

[87] Rui Zhang. Automatic access control rule generation via semantic

matching. Workshop on Matching and Meaning 2009 (WMM09), to

appear 2009. vi

[88] Rui Zhang, Bruno Crispo, and Fausto Giunchiglia. Relbac:design and

run time reasoning about web access control policies. In International

Symposium on Policies for Distributed Systems and Networks (POL-

ICY 09), to appear 2009. vi, 93, 99

[89] Chen Zhao, NuerMaimaiti Heilili, Shengping Liu, and Zuoquan Lin.

Representation and reasoning on rbac: A description logic approach.

140

BIBLIOGRAPHY

In Dang Van Hung and Martin Wirsing, editors, ICTAC, volume 3722

of Lecture Notes in Computer Science, pages 381–393. Springer, 2005.

29, 31

141

Appendix A

Brief Introduction of Description

Logic

Description logic (DL) is first introduced as a formalism for representing

knowledge. Basic DL [4] contains basic attribute language (AL) as in Table

A.1. The most common extensions of AL are listed in Table A.2.

In DLs, a distinction is drawn between the so-called TBox (terminolog-

ical box) and the ABox (assertional box). In general, the TBox contains

sentences describing concept hierarchies (i.e., relations between concepts)

while the ABox contains “ground” sentences stating where in the hierarchy

individuals belong (i.e., relations between individuals and concepts)

The terminology axioms have the forms as the following:

C � D(R � Q) | (inclusion)

C ≡ D(R ≡ Q) | (equality)

Where C,D are concepts and R,S are roles. An interpretation I satisfies

inclusion C � D if CI ⊆ DI (I satisfies inclusion R � Q if RI ⊆ QI), and it

satisfies equality C ≡ D if CI = DI (I satisfies equality R ≡ Q if RI = QI).

An equality with left-side an atomic concept is called a definition. A set

of definitions T is a terminology (or TBox) if no symbolic name is defined

no more than once, that is every atomic concept A can appear on left-side

143

Table A.1: Basic Description Logic-Attribute Language (AL)

Constructor Syntax Semantic

Atomic concept A AI

Top concept � �I

Bottom concept ⊥ ∅

Complement of atomic concept ¬A �I − AI

Intersection of atomic concepts C �D CI ∩DI

Universal value restriction ∀R.C {a ∈ �I | ∀b.R(a, b) → C(b)}

Limited existential restriction ∃R.� {a ∈ �I | ∃b.R(a, b)}

of an axiom at most once.

Here’s an example (eg1) about a bank service: all the system users

are divided into two groups the customers and the employees (intersection

may exists). There are 3 positions among bank employees, the teller, the

auditor and the manager. The teller serves the customer. The auditor

audits the teller. We can model with the following TBox (TB1):

User ≡ Customer � Employee, Teller ≡ serve.Customer,

Auditor ≡ audit.Teller,Manager ≡ manage.Employee,

Teller � Employee, Auditor � Employee,Manager � Employee.

So that in this terminology, we have the following result:

T � Manager � User or Manager �T User

by which AL mean the proposition ‘Manager � User’ can be inferred

from TBox ‘TB1’.

The world description axiom (ABox) describes a specific state of affairs

of an application domain in terms of concepts and roles. ABox has the

following forms:

C(a), R(b, c)

in which a, b, c are individuals, C is a concept and R is a role. The two

forms are called concept assertion and role assertion respectively. Inter-

144

APPENDIX A. BRIEF INTRODUCTION OF DESCRIPTION LOGIC

Table A.2: Extended Description Logic

Constructor Syntax Semantic

Existential restriction ∃R.C {a ∈ �I | ∃b.R(a, b) ∧ C(b)}

Number restriction ≤ nR {a ∈ �I | | {b | R(a, b)} |≤ n}

≥ nR {a ∈ �I | | {b | R(a, b)} |≥ n}

pretations of the ABox are former interpretations of concepts and roles in

addition to mappings from individual name to an element in the interpre-

tation function domain, such as to map a to aI ∈ �I . For convenience AL

introduces individual name with the constructor ‘set’ and ‘fill’.

{a1, ..., an} | (set)

(R : a) | (fill)

The interpretations of these constructors are: {a1, ..., an}
I = {aI

1
, ..., aI

n}

and (R : a)I = {b ∈ �I | (b, aI) ∈ RI}.

145

	Introduction
	1 New Challenges for Access Control
	1.1 The Access Control Problem
	1.2 New Challenges
	1.2.1 Web Resource
	1.2.2 Ubiquitous Computing
	1.2.3 Social Network

	1.3 Current Applications
	1.4 Summary

	2 Access Control Models
	2.1 Early Access Control Models
	2.1.1 Discretionary And Mandatory Access Control
	2.1.2 Access Matrix
	2.1.3 Access Control List

	2.2 Role-Based Access Control
	2.2.1 The RBAC Model
	2.2.2 Separation of Duties
	2.2.3 Administration
	2.2.4 Extensions

	2.3 Trust-Based Access Control
	2.4 Formal Methods for Access Control Models
	2.4.1 Non-Logical
	2.4.2 Logical

	2.5 Summary

	3 RelBAC Model
	3.1 ER Model of RelBAC
	3.2 Logical Framework of RelBAC
	3.3 General Rules
	3.4 Rules Involving Instances
	3.5 The `All' Rule
	3.6 Grained Cardinality
	3.7 Summary

	4 Reasoning in RelBAC
	4.1 Design Time Reasoning
	4.1.1 Hierarchy Management
	4.1.2 Membership Management
	4.1.3 Permission Assignment
	4.1.4 Separation of Duties (SoD)

	4.2 Runtime Reasoning
	4.3 Summary

	5 Other Models in RelBAC
	5.1 Early Models in RelBAC
	5.2 RBAC in RelBAC
	5.2.1 Interpretation of RBAC
	5.2.2 RBAC in RelBAC

	5.3 PBAC in RelBAC
	5.3.1 PBAC model
	5.3.2 Interpretation of PBAC
	5.3.3 PBAC in RelBAC

	5.4 Summary

	6 Lightweight Ontologies for Access Control
	6.1 Propagation Problem
	6.2 Lightweight Ontologies
	6.3 Lightweight Ontologies in RelBAC
	6.4 Summary

	7 Semantic Matching for Access Control
	7.1 Request for New Rules
	7.2 Semantic Matching
	7.3 Automated Rule Generation in RelBAC
	7.3.1 Rule Design
	7.3.2 Rule Integration

	7.4 Summary

	8 Evaluation
	8.1 Reasoner Selection
	8.2 Benchmark Creation
	8.3 Results
	8.3.1 Performance Test
	8.3.2 Single Type Assignment
	8.3.3 Multiple Type Assignment
	8.3.4 Increasing Individual

	8.4 Summary

	9 Implementation
	9.1 System Architecture
	9.2 Closed World Assumption
	9.3 `All' Rule Implementation
	9.4 Summary

	10 Conclusion
	Bibliography
	A Brief Introduction of Description Logic

